平成6年度
微生物遺伝資源探索収集調査報告書
第8巻
1996.3
農業生物資源研究所
とりまとめ
（連絡先）
農業生物資源研究所
遺伝資源第一部
微生物探索評価研究チーム
加来 久敏・横山 正・青木 孝之
落合 弘和・北本 宏子・西村麻里江
TEL 0298-38-7452
微生物の探査収集プロフィール

北海道で収集した黄症状株（アカクローバてんぐ巢病）

罹病した植物内に観察されるMLO粒子（アカクローバてんぐ巢病内）

福島県柳津町で採集した子実体（ナルタケ属）

根頭がんしぐ病の病徵（アーモンドの地際に形成されたがんしぐ、サウスオーストラリア州、Willunga）

根頭がんしぐ病菌の病原性検定（ベンケイソウの茎に形成されたがんしぐ）

イネ病原微生物の探査収集（スリランカ、ヌワラエリヤ周辺）
はじめに

地球環境問題はひとびとの生活のあらゆる面で大きな関わりをもつことが認識され、様々な情報が溢れるなかで、生物遺伝資源の大切さも日増しに高まっている。微生物遺伝資源の探索・収集は古くから実施されているところであるが、バイオテクノロジーの発達により、ある微生物から取り出した遺伝子を別種の微生物に組み入れることはそれほど困難でなくなり、微生物の探索・収集はまさにこれまでにない新しい遺伝子を収集する時代になった。農林水産省においても、遺伝子資源の探索・収集の重要性を認識し、今後の重要な基礎研究として位置づけ推進すべき課題としている。微生物遺伝資源には、未知の特性を有するものが自然界におおく存在するものとみられており、遺伝資源の探索・収集は、今後とも長期にわたり継続していくべきものと考えられる。しかし、海外における遺伝子資源の収集は、ますます難しくなりつつある。海外における遺伝資源の収集は、その国との共同研究を基盤として成り立つものであり、相互理解と同様な利益が受けられることが必要である。

農林水産省で実施しているジーンバンク事業は、新しい機能をもつ生物資源の開発に不可欠な遺伝資源を収集・評価し、保存、配布するもので、農業技術の開発の基礎とるとともに、生物学をはじめとする科学の発展に寄与するものである。農林水産ジーンバンク事業の微生物部門では、毎年国内数チーム、海外1チームを派遣して微生物の探索・収集を実施しているところである。探索・収集された微生物遺伝資源は、それぞれの微生物株について特性評価を行い、種の同定が完了し、特性が明らかとなったものから順次農林水産省ジーンバンクに登録し、広く公開している。

平成6年度に行われた微生物の探索・収集は、国内では「北海道に発生する植物病原MLOの探索と収集」および「東北地方におけるナラタケ属菌の生態の解明と分類学的検討」、海外では「オーストラリアにおけるAgrobacterium属細菌の探索・収集」および「スリランカ国におけるイネ病原微生物の探索・収集」である。本報告書は、平成6年度に実施された微生物遺伝資源の探索・収集の結果をとりまとめたものである。

国内、国外の微生物遺伝資源の探索・収集にあたって、ご協力を頂いた多くの関係各位ならびに探索・収集され、報告書を作成された方々、また、海外の探索・収集にあたっては、海外の研究者および関係各機関に記して感謝の意を表します。

平成8年2月

遺伝資源第一部長

加藤邦彦
凡例

各報告書の表中の微生物群、微生物種類、利用区分の項には以下のコード番号を用いた。

<table>
<thead>
<tr>
<th>微生物群</th>
<th>微生物種類</th>
<th>利用区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 環境微生物</td>
<td>01 細菌</td>
<td>11 植物病原体</td>
</tr>
<tr>
<td>200 家畜微生物</td>
<td>02 放射菌</td>
<td>12 動物病原体</td>
</tr>
<tr>
<td>300 食品微生物</td>
<td>03 酵母</td>
<td>13 藻類病原体</td>
</tr>
<tr>
<td></td>
<td>04 糸状菌</td>
<td>14 生産への利用</td>
</tr>
<tr>
<td></td>
<td>05 ウィルス</td>
<td>20 食品加工への利用</td>
</tr>
<tr>
<td></td>
<td>06 ファージ</td>
<td>30 代謝産物への利用</td>
</tr>
<tr>
<td></td>
<td>07 マイコプラズマ</td>
<td>40 微生物菌体の直接利用</td>
</tr>
<tr>
<td></td>
<td>08 リケッチア</td>
<td>50 バイオマス変換の利用</td>
</tr>
<tr>
<td></td>
<td>09 DNA・RNA</td>
<td>60 環境保全・浄化への利用</td>
</tr>
<tr>
<td></td>
<td>10 形質転換菌</td>
<td>70 バイオテクノロジーへの利用</td>
</tr>
<tr>
<td>11 その他</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 植物細胞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 動物細菌</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 原虫</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 線虫</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
目次

まえがき 遺伝資源第一部長 加藤邦彦

I. 国内探索収集報告

1. 北海道に発生する植物病原MLOの探索と収集 ... 1
 農業研究センター 病害虫防除部
 マイコプラズマ病防除研究室 塩見敏樹
2. 東北地方におけるナラタケ属菌の生態と分類学的検討 9
 森林総合研究所 森林生物部
 森林微生物科 樹病研究室 長谷川絵里

II. 海外探索収集報告

1. オーストラリアにおけるAgrobacterium属細菌の探索・収集 17
 農業環境技術研究所 環境生物部
 寄生菌動態研究室 澤田宏之
 静岡県農業試験場 病害研究室 牧野孝宏
2. カンボジアにおける病原微生物の探索・収集1995 25
 農業生物資源研究所 遺伝資源第一部
 微生物探索評価研究チーム 落合弘和
 京都府立大学 農学部 植物病研究室 増野修
 北海道立十勝農業試験場 宮島邦之

III. 前年度までの収集実績のまとめ
Annual Report on Exploration and Introduction of Microbial Genetic Resources
Vol. 8
(April, 1994 - March, 1995)

Contents

Preface Kunihiko KATO
 Director, Department of Genetic Resources Page 1

I Exploration in Japan

1. Exploration and collection of plant pathogenic mycoplasmalike
 organisms (MLOs) in Hokkaido Toshiki SHIOMI
 Mycoplasma Laboratory
 National Agriculture Research Center Page 1

2. Armillaria Species in Tohoku District Eri HASEGAWA
 Forest Pathology Laboratory
 Forestry and Forest Products Research Institute Page 9

II Overseas Exploration

1. Survey and Collection of Agrobacterium in Australia Hiroyuki SAWADA
 Laboratory of Pathology, Department of Microbiology,
 National Institute of Agro-Environmental Sciences
 Takahiro MAKINO
 Laboratory of Plant Pathology,
 Shizuoka Agricultural Experiment Station Page 17

2. Survey and Collection of Rice Pathogenic Microorganisms in Sri Lanka, 1995 Hirokazu OCHIAI
 Laboratory of Microorganism Genetic Diversity
 National Institute of Agrobiological Resources
 Osamu HORINO
 Laboratory of Plant Pathology
 Kyoto Prefectural University
 Kunitake MIYAJIMA
 Tokachi Agricultural Experiment Station Page 25
I. Exploration in Japan
北海道に発生する植物病原MLOの探索と収集

農業研究センター 病害虫防除部
マイコプラズマ病防除研究室
塩見敏樹

Exploration and collection of plant pathogenic mycoplasmalike organisms (MLOs) in Hokkaido

Toshiki SHIOMI

Mycoplasma Laboratory
National Agriculture Research Center
Kannondai 3-1-1, Tsukuba, Ibaraki 305, Japan

1.目的
マイコプラズマ様微生物（Mycoplasmalike organism、以下MLOと略す）に起因する病害は、近年の水田転換畑への野菜類の導入などにより増加傾向にある。しかし、北海道においては、ジャガイモ、トマト、ニンジン、フキ、アスター、コスモス、クローバ類などにキマグラヒロヨコバイ媒介性MLOによる病害の発生が過去に多く報告されているにも拘らず、近年、これらMLO病の発生は非常に減少している。MLOは、現在培養困難な微生物であり、MLO分離株の保存には多くの困難を伴うが、分子生物学的手法などによるMLOの生物学的・分類学的な研究を行うためには、わが国に発生するMLO株を多く収集し、保存しておく必要がある。そこで、北海道に発生する植物病原MLOの探索・収集を行うこととした。

2.実施の概要
1994年8月30日より9月3日まで北海道に出張し、表1に示したものに北見市、札幌市などの農家園場においてMLOの探索・収集を行った（図1）。観察を行った植物は、アスター、コスモス、マリーゴールド、フキ、ペチュニア、チャービル、セルリー、ニンジン、ネギなどである。その結
果、北海道市でチャービル（Anthriscus cerefolium L.）に、札幌市でアカクローバ（Trifolium pratense L.）に萎縮、黄化、てんく果症状などを示す株を見いだし、研究室に持ち帰った（図2）。収集した株の診断、ヨコバイ類による戻し接種などは、従来の方法で行い、さらに特性調査も行った（表2）。

3. 収集成果
収集した2株の萎黄症状株について行った検定結果は次の通りである。

1）電顯観察
収集株の典型的な病徵を示す新薬を常法により固定・包埋した後、超薄切片を製作し、電顯観察を行った。その結果、萎縮、黄化、てんく果症状を示すチャービルおよびアカクローバの維胞細胞内には大小多数のMLO粒子が観察された（図3）。

2）昆虫伝搬試験
研究室で累代飼育しているキマグラヒロヨコバイ（Scleroracus flavopictus（Ishihara））およびヘフタシヘヨコバイ（Macrosteles striifrons Anufriev）を用いて発病株から伝搬試験を行ったところ、両株はいずれもキマグラヒロヨコバイで媒介されることが明らかになった（表3）。

3）特性調査
得られたMLO分離株の特性調査のうち、キマグラヒロヨコバイによる虫媒接種により2分離株の宿主範囲について検討を行なった。その結果、2分離株はほぼ同一の宿主範囲を示し、ジャガイモ、トマト、コスモス、アスター、フキ、アカクローバなど多くの植物を発病させることが明らかになった（表4）。

以上のことから今回収集した萎黄症状株は、チャービル萎黄病およびアカクローバでんく果病であることが明らかになった。なお、キマグラヒロヨコバイ媒介性MLOによるチャービル萎黄病の発生は最初の報告である。

今後これらの分離株はMAFFウィーンバンクに登録するとともに、さらに特性検定を進め、MLOの遺伝子解析などを行なっていく予定である。

4. 所感
MLO病の発生は年次変動が大きく、今日までに報告された多くのMLO病には現在発生が確認出来ないものがある。このため、植物病原微生物としてのMLOの基礎的データを集積するために、今後も地道な探索・収集を継続していく必要がある。

現在MLOは培養できないため、MLO分離株の保存は病植物体での継代保存が主であり、多大の労力と温室などの施設を必要とする。今後は新しい手法も取り入れて、より簡易な保存技術を確立する必要がある。

今回の探索・収集では、短い期間であったにも関わらず2分離株を得ることができた。これにはJA北海道市、エスピー食品株式会社、北海道中央農業試験場、北海道病害虫防除所および北海道農業試験場の関係者各位に多大なご協力を頂いた。ここに記して心からお礼を申し上げる。
Summary

Exploration and collection of plant pathogenic mycoplasmalike organisms (MLOs) were conducted in Hokkaido, Japan. The diseases of chervil and red clover, characterized by yellows, witches’ broom and stunting of the plants, were collected.

Electron microscopic studies revealed the presence of numerous MLO particles in the phloem tissues of the diseased plants. Of the two leafhoppers, Scleroracus flavopictus and Macrosteles striifrons, only S. flavopictus was found to transmit both diseases. Two MLO isolates had the similar wide host range.
表1 探索・収集日程表

<table>
<thead>
<tr>
<th>年 月 日</th>
<th>行 程</th>
<th>行 動 内 容</th>
</tr>
</thead>
</table>
| 1994. 8. 30 | つくば→羽田→女満別→北見 | 移動
| | | ＪＡ北見市にて打ち合わせ後、北見市周辺で探索・収集 |
| 1994. 9. 1 | 北見→女満別→千歳→長沼→札幌 | 移動
| | | 北海道中央農試にて打ち合わせ後、長沼町周辺で探索 |
| 1994. 9. 2 | 札幌 | 北海道農試にて打ち合わせ後、札幌市周辺で探索・収集 |
| 1994. 9. 2 | 札幌→つくば→羽田 | 移動 |

図1 北海道における探索・収集地点

表2 国内微生物遺伝資源の現地収集実績（平成6年度調査分）

<table>
<thead>
<tr>
<th>微生物群</th>
<th>微生物種類</th>
<th>利用区分</th>
<th>原体概要番号</th>
<th>対象微生物（属・種名または目的微生物）</th>
<th>分離源</th>
<th>収集年月日</th>
<th>収集場所</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>01</td>
<td>11</td>
<td>北見</td>
<td>mycoplasmalike organism</td>
<td>チャービル</td>
<td>1994. 8. 30</td>
<td>北海道北見市</td>
<td>露地栽培</td>
</tr>
<tr>
<td>11</td>
<td>01</td>
<td>11</td>
<td>札幌</td>
<td>mycoplasmalike organism</td>
<td>アカクローバ</td>
<td>1994. 9. 2</td>
<td>北海道札幌市豊平区</td>
<td></td>
</tr>
</tbody>
</table>
図2 北海道において収集した萎黄症状株
1. チャービル萎黄病（H：健全株，D：発病株）
2. アカクローパてんぐ巣病
図3 北海道において収集したチャーピル萎黃病および
アカクローバてんぐ巣病に罹病した植物内に観察されるMLO粒子
1. チャーピル萎病株内に観察されたMLO粒子（30,000倍）
2. アカクローバてんぐ巣病株内に観察されたMLO粒子（30,000倍）

表3 北海道において採集したMLO株からシュンギクへの戻し接種

<table>
<thead>
<tr>
<th>MLO株</th>
<th>供試ヨコバイ</th>
<th>獲得吸汁期間</th>
<th>発病株数／接種株数</th>
</tr>
</thead>
<tbody>
<tr>
<td>チャーピル</td>
<td>キマダラヒロヨコバイ</td>
<td>2日</td>
<td>8／20</td>
</tr>
<tr>
<td>ヒメフタテンヨコバイ</td>
<td>2日</td>
<td>0／13</td>
<td></td>
</tr>
<tr>
<td>アカクローバ</td>
<td>キマダラヒロヨコバイ</td>
<td>2日</td>
<td>6／7</td>
</tr>
<tr>
<td>ヒメフタテンヨコバイ</td>
<td>2日</td>
<td>0／10</td>
<td></td>
</tr>
</tbody>
</table>
表4 北海道において収集したMLO分離株の宿主範囲

<table>
<thead>
<tr>
<th>供試植物</th>
<th>供試MLO分離株</th>
<th>チャービル萎黄病MLO</th>
<th>アカクローパてん根果病MLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダケ科</td>
<td>ヒメスイバ</td>
<td>1/3</td>
<td>2/9</td>
</tr>
<tr>
<td>アカザ科</td>
<td>ホウレンソウ</td>
<td>3/3</td>
<td>1/3</td>
</tr>
<tr>
<td>ナデシコ科</td>
<td>ナデシコ</td>
<td>-</td>
<td>2/3</td>
</tr>
<tr>
<td>アブラナ科</td>
<td>ハクサイ</td>
<td>1/3</td>
<td>3/6</td>
</tr>
<tr>
<td></td>
<td>ダイコン</td>
<td>3/6</td>
<td>2/6</td>
</tr>
<tr>
<td></td>
<td>カブ</td>
<td>4/6</td>
<td>2/6</td>
</tr>
<tr>
<td></td>
<td>キャベツ</td>
<td>2/6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ビート</td>
<td>0/6</td>
<td>-</td>
</tr>
<tr>
<td>マメ科</td>
<td>シロクローパ</td>
<td>3/6</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>アカクローパ</td>
<td>3/6</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>アズキ</td>
<td>1/3</td>
<td>3/6</td>
</tr>
<tr>
<td></td>
<td>インゲン</td>
<td>3/6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>エダマメ</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>エンドウ</td>
<td>3/9</td>
<td>6/9</td>
</tr>
<tr>
<td>フウロソウ科</td>
<td>ゲンノショウコ</td>
<td>3/6</td>
<td>8/9</td>
</tr>
<tr>
<td>キョウウサ科</td>
<td>香料ゼラニュウム</td>
<td>5/6</td>
<td>3/3</td>
</tr>
<tr>
<td>ウコギ科</td>
<td>ウド</td>
<td>3/6</td>
<td>1/6</td>
</tr>
<tr>
<td>セリ科</td>
<td>セルピー</td>
<td>1/3</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>ニンジン</td>
<td>4/6</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>ミツバ</td>
<td>2/3</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>チャービル</td>
<td>3/6</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>パセリ</td>
<td>2/3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>セリ</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>リンドウ科</td>
<td>リンドウ</td>
<td>3/3</td>
<td>2/6</td>
</tr>
<tr>
<td>キョウウサ科</td>
<td>ニチニシソウ</td>
<td>4/6</td>
<td>4/6</td>
</tr>
<tr>
<td>ヒルガオ科</td>
<td>アサガオ</td>
<td>4/6</td>
<td>-</td>
</tr>
<tr>
<td>ナス科</td>
<td>ジャガイモ</td>
<td>4/6</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td>ダチュラ</td>
<td>2/3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>トマト</td>
<td>1/3</td>
<td>3/9</td>
</tr>
<tr>
<td></td>
<td>ナス</td>
<td>2/6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ベチュニア</td>
<td>5/6</td>
<td>7/9</td>
</tr>
<tr>
<td></td>
<td>N. glutinosa</td>
<td>2/6</td>
<td>2/6</td>
</tr>
<tr>
<td>ゴマ科</td>
<td>ゴマ</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>オオバコ科</td>
<td>オオバコ</td>
<td>3/6</td>
<td>4/6</td>
</tr>
<tr>
<td>ウリ科</td>
<td>キュウリ</td>
<td>2/6</td>
<td>3/6</td>
</tr>
<tr>
<td></td>
<td>ニホンカボチャ</td>
<td>2/6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>セイヨウカボチャ</td>
<td>4/6</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>ヘチマ</td>
<td>2/3</td>
<td>-</td>
</tr>
<tr>
<td>キク科</td>
<td>アスター</td>
<td>2/6</td>
<td>5/9</td>
</tr>
<tr>
<td></td>
<td>コスモス</td>
<td>1/3</td>
<td>3/6</td>
</tr>
<tr>
<td></td>
<td>ヨモギ</td>
<td>0/12</td>
<td>0/9</td>
</tr>
<tr>
<td></td>
<td>シュエンギク</td>
<td>12/12</td>
<td>9/9</td>
</tr>
<tr>
<td></td>
<td>フキ</td>
<td>4/6</td>
<td>2/6</td>
</tr>
<tr>
<td></td>
<td>タンポポ</td>
<td>2/3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ツワブキ</td>
<td>4/6</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>レタス</td>
<td>8/9</td>
<td>1/3</td>
</tr>
<tr>
<td>イネ科</td>
<td>トウモロコシ</td>
<td>0/9</td>
<td>-</td>
</tr>
<tr>
<td>ユリ科</td>
<td>タマネギ</td>
<td>5/6</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>ネギ</td>
<td>2/3</td>
<td>3/6</td>
</tr>
</tbody>
</table>

1) 発病株数/接種株数
東北地方におけるナラタケ属菌の
生態の解明と分類学的検討

森田総合研究所 森林生物部 樹病研究室
長谷川絵里

Armillaria Species in Tohoku District

Eri HASEGAWA

Forest Pathology Laboratory
Forestry and Forest Products Research Institute

1．目的
ナラタケ(Armillaria)属は世界的に分布し、多くの樹種に根腐れ病を起こす担子菌の属である。ヨーロッパ・北アメリカおよびオーストラリアなどの研究では、種によって病原性や寄主選択、生息場所などの性質に違いが見られると報告されている。日本国内でも数種のナラタケ屬菌が報告されているが、一般にこれまでつばのあるナラタケ属菌を1種とみなしてきたために未報告の種が存在する可能性もあり、それぞれの種の病原性に至っては全く解明されていない。従って、ならたけ病発生地やその痕跡のない林で得られる種を比較することにより、それぞれの種の生態について知見を得て、ならたけ病に関係の深い種を特定することが必要である。そこで、キノコの宝庫とされ、大量の子実体の発生が期待される東北地方においてナラタケ属菌の採集を行うことにした。

2．実施の概要
採集は当地のキノコ狩りシーズンである1994年9月から10月にかけて、広葉樹林およびならたけ病が発生したヒノキ造林地で行った。地理・気象条件や種の性質により子実体発生時期がずれることが予想されるため、2ヶ月の間に1泊程度の短い採集行動数回組込み、できるだけ多くの種を採集できるようにした。交通機関としては宮城県までの近距離は官用車を、宮城以遠は公共交通機関を利用した。子実体、罹病木上の菌糸束および根状菌糸束を採集し、持ち帰って分離した。子実体
は写真を撮り、凍結乾燥して標準とした。

ナラタケ属菌は、種の間で胞子の形がほとんど同じである上、種によっては子実体の形態が類似して区別のつきにくいものがあり、熟達した専門家でなければ厳密な分類は難しいとされている。一方、ナラタケ属菌は交配試験によって互いに交配しないグループに分かれることが知られている。このグループを生物学的種と呼ぶ。同じ生物学的種に属する菌株には病原性や子実体の形態などが類似する傾向があることが明らかにされつつある。さらには、生物学的種をもとに子実体の形態を検討し、分類学的種名をつける研究が行われている。そこで、得られた菌株を交配試験に供し、生物学的種を判別し、その結果を子実体の形態の特徴と合わせて検討することにした。

3. 収集成果

1）方法

(1) 採集および分離

子実体からは、子実体組織と単胞子の双方の分離を試みた。組織からの分離には2種類の平板培地（カンジダ培地、および硫酸ストレプトマイシン300mg/lを添加したPDA培地）を用いた。単胞子分離には同濃度の硫酸ストレプトマイシンを添加した1.5％塩寒天平板培地を用い、子実体のひだをとりビンセットで培地の表面に押しつけるようにして胞子を落とし、滅菌水を加えて培地表面を洗い、同様に調整した他の平板培地数枚に注ぎ分け、最後に水を捨てて培養した。数日後顕微鏡で発芽を確認した胞子を拾い、PDA培地に移し、単胞子分離菌株とした。胞子分離菌株の外見は変異に富むので、1子実体当たり極力10菌株以上分離し、典型的な単胞子分離菌株の菌叢である白色の気中菌系の豊富なものが得られるようにした。

罹病木上の菌糸膜は樹皮ごと約10cm四方に切り取り、乾燥しないようチャック付ポリエチレン袋に入れて持ち帰り、子実体組織からの分離と同様に分離した。

根状菌系束はできるだけ連続した形で採取し、乾燥しないようチャック付ポリエチレン袋に入れて持ち帰り、研究室で約10cmに切り、70％エタノールと1％氷塩酸水溶液で表面殺菌して滅菌水で洗い、さらに約1.5cmに切り、子実体組織からの分離と同じ培地に切り口を差し込むように並べ、分離した。

分離された菌株は最終的にPDA斜面培地に培養し、10℃下で保存した。

(2) 収集・分離菌株の特性調査

一般的にナラタケ属の単胞子分離菌株はhaploidであり、白い気中菌系の豊富な菌叢を示し、他の菌株と対峙培養して交配が成立するとdiploidとなり黒褐色液状に変化する。この菌叢の変化を利用して交配の成否を判定した。各子実体からの単胞子分離菌株のうち典型的な白い気中菌系の多い菌叢を持つものを3、4菌株ずつ選び、交配試験に供した。

まず単胞子分離菌株間で交配試験を行い、菌株を不和合性集団に分けた。次に各集団から数菌株ずつ選び、菌糸膜分離菌株、根状菌系束分離菌株および単胞子分離に成功しなかった子実体の組織分離菌株と交配試験を行い、それらがいずれの集団に属するかを調べた。交配試験はMA平板培地（1％寒天、2％麦芽抽出物）を用い、2反復ずつ行った。接種の約1ヶ月後に菌叢の変化の有
無により交配の成否を判定した。
その後各集団の子実体の形態について検討を行った。

2) 結果
(1) 採集および分離
採集された子実体は33で、うち21子実体から単胞子分離菌株が合計180菌株得られた。組織分離菌株は32子実体から得られた。菌糸膜1、根状菌糸束2から計3菌株が分離された。分離された菌株を表2に示す。
(2) 収集・分離菌株の特性調査
単胞子分離に成功した21子実体のうち13子実体からの単胞子分離菌株は、ほとんどが白色的気中菌糸の豊富な菌叢を示し、これらの菌株間の交配試験の結果、供試菌株は3つの不和合性集団すなわち生物学的種に分かれた。これらをそれぞれグループ1、2、3とする。
残り8子実体の単胞子分離菌株はすべて黒褐色殻状を呈した。これら8子実体の単胞子分離菌株同士では菌叢の変化による交配の成否の判定ができないため、そのような組み合わせでの交配試験は行わなかった。これら8子実体の単胞子分離菌株と他の単胞子分離菌株との交配試験では、白い気中菌糸を持つ他の単胞子分離菌株の菌叢の変化を交配の成否の指標にしたが、その組み合わせでは交配は成立しなかった。この8子実体の集団をグループ4とする。
それぞれのグループの子実体の特徴を調べたところ、グループ1は、大型、かさは赤褐色で、大きい暗褐色の鱗片が多数あり、柄はかさと同色で円柱状、つばは厚い膜質で永存性で、暗褐色の鱗片で緑取られていた。これはA. ostoyae（Romagnesi）Herinkの特徴と一致し、グループ1はA. ostoyaeとみなしてよいと考えられる。グループ2、3は互いに区分ける特徴に乏しく、いずれもかさは褐色で鱗片は小さく脱落性、柄はかさとほぼ同色で、根元に向かって太まり、つばは繊維質かやや膜質で消失性であった。これらの特徴のみではグループ2、3の種を同定するには不十分であった。グループ4は、かさは淡黄白色から黄褐色で、鱗片はごく小さくわずかにあるかほとんどなく、ひだは直生から垂生、柄はかさと同色で、円柱状か根元に向かいかや細まり、つばは膜質で永存性であった。これらの特徴はA. mellea（Vahl:Fr.）Kummerと一致する。ただし、欧州・北米で記載されているA. melleaの単胞子分離菌株は白色の気中菌糸をもつもので、今回分離された単胞子分離菌株とはこの点が異なる。アフリカでは子実体の形態が欧州・北米のA. melleaとほぼ同じで交配するが、単胞子分離菌株が黒褐色殻状となる菌株が報告されており、グループ4はこのアフリカ型のものに近いと考えられる。
次に、グループ1、2、3のそれぞれから単胞子分離菌株3、4株ずつを選び、単胞子分離ができなかった子実体の組織分離菌株、菌糸膜分離菌株および根状菌糸束分離菌株との交配を試みたところ、いずれの組み合わせでも明瞭な交配反応は見られなかった。これは、交配に用いられた両者の菌株が異なる生物学的種に属していたためか、あるいは気中菌糸の多い単胞子分離菌株同士の交配反応に比べ、方が黒褐色殻状の組織分離菌株である場合には、交配反応が不明瞭になりやすいためと考えられる。以上の結果を表3に示す。
ヒノキならたけ病害地からはグループ1およびグループ4のみが採集されている。しかし、両者
とも特にたらけ病発生の形跡のない広葉樹の天然林からも分離されており、特別にヒノキにのみ寄生するわけではない。従ってこの2つのグループに属する菌は、広葉樹伐採跡にヒノキを植えた場合にヒノキならけ病を起こす可能性があると考えられる。

グループ２およびグループ３は、すべてならけ病発生の形跡のない、スギ造林地の伐根と広葉樹の天然林から分離されている。これらは、少なくとも東北地方におけるヒノキならけ病には関係が薄いグループと推測される。ただし、グループ３は2例のみの採集だったがいずれも広葉樹から発生した子実体であるのに対し、グループ２は3例中2例がスギ伐根から発生した子実体であった。このことは、グループ２の菌株が基本として針葉樹・広葉樹を選ばないことを示唆する。また、今回の採集結果はグループ２の菌株が活物寄生をしないという証拠にはならないため、何らの原因で衰弱したスギなどの針葉樹に寄生する可能性も皆無ではないと考えられる。

4. 所感

今回の採集では、ナルタケ属の4種の生物学的種を採集することができた。しかし、全国的には今日までに多くのが生物学的種が報告されており、東北地方でも採集に漏れた生物学的種も存在すると考えられる。4種のみの採集結果となった原因として、生物学的種により子実体の発生時期が異なり、ある種の子実体の発生時期が採集時期とずれていた可能性があることが挙げられる。採集されたものの採集時期を見直しても、グループ２、３はグループ１、４より早い時期に採集された傾向がある。秋の始まりが早い東北地方ではグループ２、３の発生時期以前に子実体を形成するグループがあるかもしれない。また、調査地として森林を選び、湿地や草地を囲らなかったために、見逃したグループもあるかもしれない。今後の採集のために役立てたい反省点もある。

調査地としては、東北6県のうち5県まで回ることができた。つくばを拠点とした場合の交通事情の悪さと日程・旅費の限界のため、秋田県には行くことができなかったのが残念である。

ならけ病との関連としては、ヒノキならけ病病害地から採集された菌株はA. ostoyaeとA. melleaの2種に収束し、この2種は少なくとも東北地方のヒノキならけ病と深い関係があると考えられた。ヒノキ以外では青森県のアカマツのならけ病の報告があることにより、グループ１に当たるA. ostoyaeが分離されている。これは、今回の結果と合わせて針葉樹のならけ病の病原菌としてA. ostoyaeが有力であることを示唆するものといえる。

分離された菌株のうち、子実体組織・根状菌糸・菌糸膜分離菌株は、交配させた単胞子分離菌株に対して明瞭な反応を引き起こさなかった。この現象がナルタケ属の組織分離菌株に広範に起こるすれば、交配試験による生物学的種の判别のために組織分離菌株を分離・収集することはあまり意味のないことになる。このため、採集した子実体から単胞子分離菌株を確実に得る方法が必要である。今回の分離では、単胞子分離菌株を得るためにきのこのひだを直接培地に接触させる方法をとったため、若過ぎたり古過ぎたりしてかきを紙に伏せても胞子を落とさない子実体からも、容易に単胞子分離が行えるようになった。この方法は意外にコンタミナズ、寒天のまま5℃前後で保存すると2週間くらいは単胞子分離可能な状態で保存でき便利である。今回の調査で最初に行っただ青森で採集した子実体については、この方法を取り入れる前であったため、単胞子分離ができない
かったが、それ以降の採集分についてはかなり効率よく単胞子分離できた。

この調査を行うに当たり、岩手県林業技術センターの小岩俊行氏、岩手県千厩地方振興局の小原雄氏に協力していただいた。この場を借りて深く御礼申し上げる。

5．参考文献
8）寺下隆喜代・沢口勝則（1991）：青森県で発生したアカマツならたけ病の病原菌について。森林防制40：178-183.
<table>
<thead>
<tr>
<th>年月日</th>
<th>行程</th>
<th>行動</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994.9.12</td>
<td>茅崎→青森</td>
<td>森林総合研究所から青森市まで移動、宿泊</td>
<td></td>
</tr>
<tr>
<td>9.13</td>
<td>青森→茅崎</td>
<td>青森市にて採集の後、森林総合研究所に帰着</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>茅崎→山形→最上</td>
<td>森林総合研究所から山形市へ移動、白鷺山にて採集の後、最上町へ移動、宿泊</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>最上→茅崎</td>
<td>最上町八森山にて採集の後、森林総合研究所に帰着</td>
<td></td>
</tr>
<tr>
<td>10.11</td>
<td>茅崎→柳津</td>
<td>森林総合研究所から柳津町へ移動、宿泊</td>
<td></td>
</tr>
<tr>
<td>10.12</td>
<td>柳津→茅崎</td>
<td>柳津町博士山にて採集の後、森林総合研究所に帰着</td>
<td></td>
</tr>
<tr>
<td>10.20</td>
<td>茅崎→蔵王</td>
<td>森林総合研究所から蔵王町へ移動、宿泊</td>
<td></td>
</tr>
<tr>
<td>10.21</td>
<td>蔵王→茅崎</td>
<td>蔵王町にて採集の後、森林総合研究所に帰着</td>
<td></td>
</tr>
<tr>
<td>10.24</td>
<td>茅崎→東山→江刺→遠野</td>
<td>森林総合研究所から岩手県へ移動、東山町・江刺市にて採集の後、遠野にて宿泊</td>
<td></td>
</tr>
<tr>
<td>10.25</td>
<td>遠野→大迫→紫波→岩手→矢巾→茅崎</td>
<td>大迫・紫波・岩手町にて採集後、岩手県林業技術センター(矢巾町)を訪問、森林総合研究所に帰着</td>
<td></td>
</tr>
<tr>
<td>微生物群</td>
<td>微生物種</td>
<td>利用区分</td>
<td>株種整理番号</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-08</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>アオモリトウツ生立木</td>
<td>94-09</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ミツナラ生立木</td>
<td>94-10</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-11</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-12</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-13</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-14</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>スギ落枝</td>
<td>94-31</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ミツナラ枯死木</td>
<td>94-32</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>スギ伐根</td>
<td>94-33</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ピオラブ根元</td>
<td>94-34</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ピオラブ根元</td>
<td>94-35</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ピオラブ根元</td>
<td>94-36</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-37</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-38</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>スギ落枝</td>
<td>94-39</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-40</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-43</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-44</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-45</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-46</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-47</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-48</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-49</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-50</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-51</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-52</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-53</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-54</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-55</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-56</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-57</td>
</tr>
<tr>
<td>100 04 11</td>
<td>Armillaria spp.</td>
<td>ラジオラブ</td>
<td>94-58</td>
</tr>
</tbody>
</table>

（抜粋）
<table>
<thead>
<tr>
<th>グループ１</th>
<th>グループ２</th>
<th>グループ３</th>
<th>グループ４</th>
<th>明瞭な交配</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ostoyae</td>
<td>A. mellea</td>
<td>A. mellea</td>
<td>A. mellea</td>
<td>A. mellea</td>
</tr>
<tr>
<td>94-44</td>
<td>94-33</td>
<td>94-35</td>
<td>94-45</td>
<td>94-08</td>
</tr>
<tr>
<td>94-69*</td>
<td>94-39</td>
<td>94-43</td>
<td>94-47</td>
<td>94-09</td>
</tr>
<tr>
<td>94-70*</td>
<td>94-46</td>
<td>94-48</td>
<td>94-48</td>
<td>94-10</td>
</tr>
<tr>
<td>94-71*</td>
<td></td>
<td>94-65*</td>
<td>94-11</td>
<td></td>
</tr>
<tr>
<td>94-72*</td>
<td></td>
<td>94-66*</td>
<td>94-13</td>
<td></td>
</tr>
<tr>
<td>94-73*</td>
<td></td>
<td>94-67*</td>
<td>94-14</td>
<td></td>
</tr>
<tr>
<td>94-75*</td>
<td></td>
<td>94-76*</td>
<td>94-31</td>
<td></td>
</tr>
<tr>
<td>94-78*</td>
<td></td>
<td>94-77*</td>
<td>94-32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94-68*</td>
<td></td>
</tr>
</tbody>
</table>

注：単胞子分離菌株は子実体分離菌株の番号で代表さした。
*ヒノキならたけ病被害地で採集された菌株

図1 東北地方における探査収集地点
II. Exploration in Foreign Countries
オーストラリアにおける *Agrobacterium* 属細菌
の探索・収集

農業環境技術研究用 環境生物部 寄生菌動態研究室

澤田 宏之

静岡県農業試験場 病害虫部 病害研究室

牧野 孝宏*

Survey and Collection of *Agrobacterium* in Australia

Hiroyuki SAWADA

Laboratory of Pathology,
Department of Microbiology,
National Institute of Agro-Environmental Sciences
Kannondai 3-1-1, Tsukuba, Ibaraki 305, Japan

Takahiro MAKINO*

Laboratory of Plant Pathology,
Shizuoka Agricultural Experiment Station
678-1, Toyoda-cho, Iwata-gun, Shizuoka 438, Japan

* 現所属：静岡県 農政部 農業技術課
 Present Address: Agricultural Technology Division, Agricultural Affairs Department, Organization of the Shizuoka Prefectural Government.
1. 目的

Agrobacterium 属細菌に関しては、保持しているプラスミドが遺伝子のベクターとして利用できることから、プラスミド関連の研究が大変注目され、その利用技術の開発が盛んに行われている（松本・町田, 1990）。しかし、病害を防除するという植物病理学の立場からみると、染色体 DNA 上にコードされた性質にも大きな関心を払わざるを得ない。すなわち、病気をおこす主因はプラスミドであるものの、発病に至るまでの過程で染色体 DNA に関連した性質も重要な役割を果たしているからである。染色体 DNA 上にコードされた性質に注目するもう1つの理由として、検出・判別指標として利用しやすいということがあげられる。すなわち、植物病原細菌では、染色体 DNA に関連した生理・生態学的性質、血清学的性質や菌体脂肪酸組成などが検出や同定によく利用されており、病気の診断や病原細菌の生態学的研究へと活用されている。しかし、*Agrobacterium* 属細菌はこれらの性質に関して変異に富んでおり、複数の系統に分化している。しかも、類似された各系統は生理型（biovar）として整理されているものの、その定義や境界には不明瞭な部分が多数残されている（Kersers and De Ley, 1984）。さらに、biovar 間の相違点が十分に明らかにされていないこともあり、実用的な検出・判別技術を確立することが困難であるとされてきた（Kersers and De Ley, 1984; Bradbury, 1986）。

また、前述したように、植物の形質転換における遺伝子のベクターとして本菌の持つ Ti プラスミドが盛んに利用されてはいるが、Ti プラスミドに関しても系統間で変異があり、形質転換の効率や適用可能な植物種に差があることが明らかとなってきた（松本・町田, 1990）。従って、いろいろな植物に対して効率よく形質転換を行なうためには、異なる系統のプラスミドを収集し、目的に応じて選択できるような態勢をとる必要がある。

今回の探索・収集では、検出・判別技術開発に必要な特異的性状を遊び出すための実験材料、および形質転換用のベクターの確保を目的として、遺伝的に多様な本属菌が存在すると考えられていくオーストラリアにおいて根頭がんしゅ病組織を採集し、病原細菌を分離することを試みた。

2. 探索の概要

平成7年3月8日から3月22日まで、第1表および第1図に示した行程でオーストラリアのアデレード周辺を探索し、根頭がんしゅ病菌分離用サンプルを以下のように採集した（第2表）。採集にあたっては、アデレード大学 Peter J. Murphy 博士に助言と援助をいただき、車の貸与と大学の施設の利用についても便宜をはかっていただいた。

a）3月10日 サウス・オーストラリア州Willunga 周辺はアーモンドの栽培が盛んであった。10～40年生の木の地際に直径数 cm から30cm くらいの大きなかんしゅが、園によってはかなりの頻度で形成されていた（口絵が写真参照）。乳白色～淡褐色で不整形のがんしゅ組織を各樹から1つずつ削り取り、合計10個採集することができた。

b）3月11日 サウス・オーストラリア州Mount Compass 付近のユーカリの巨木に、直径20～50cm くらいのこぶが形成されていたので、削り取って採集した。なお、この日探索した McLaren Vale 周辺のブドウ園では、がんしゅ病に罹病したものはまったく見あらなかった。
c）3月12日 サウス・オーストラリア州アデレード市内のアデレード植物園周辺（ノーステラス地区）は緑が豊富であり、ユーカリをはじめとして樹種も変化に富んでいたが、根頭がんしゅ病の症状を示すものは認められなかった。

d）3月14日 サウス・オーストラリア州Barossa Valley周辺はワイン生産が盛んであり、ブドウ園が多数点在していた。しかし、探索した園では根頭がんしゅ病に罹病したものはまったく認められなかった。2年前にがんしゅ病が発生した後、廃園にされた所があったので、場の土を採取した。

e）3月17日 サウス・オーストラリア州アデレード市、University of AdelaideのWaiter Campus内を探索したところ、バラの根元に黒褐色で不整形のがんしゅが形成されていたので、罹病組織を削って採取した。

3．収集成果

(1) 分離

根頭がんしゅ病菌は、サンプルを採取後、時間が経過するにしたがって菌密度が低下するとともに、雑菌が増えるために、分離が困難になるといわれている。そこで、サンプルを採取した後、その日のうちにアデレード大学のMurphy研究室に持ち帰ってただちに冷蔵し、当日かあるいは翌日には分離を行うようにした。具体的な分離方法は以下の通りである。

採集した根頭がんしゅ病菌から、新鮮ながんしゅ組織を無菌的に切り出し、滅菌水で洗浄後、ペプトン水中でできるだけ磨砕して懸濁液を作った。これをKing B平板培地に画線培養し、28℃で3〜4日間培養した。形成されたコロニーの中から、着光色素を産生せず、円形、全縁、平滑で淡光を帯びた半透明〜白色のものを選び、滅菌したつまようじを用いてシングルコロニーを新しいKing B平板培地に穿刺して移植した。これを28℃で培養した後、日本に持ち帰った。帰国後、各コロニーを新しいKing B平板培地に再度画線培養し、形成されたシングルコロニーをYEM斜面培地に移植し、28℃で2日間培養した。このようにして、前項で述べた分離用サンプル（第2表）から77菌株を得ることができ、以下の試験に供した。

(2) 病原性

分離した77菌株の病原性は、23℃の温室で育成したトマト（品種：ボンテローザ）の茎、およびペンケイソウの茎と葉に接種することによって検定した。接種源として、被検菌株をYEM斜面培地に28℃で培養後、1白金耳量の菌体をかき取って滅菌水2mlに懸濁したものを用いた。この懸濁液を、接種植物の茎に対しては各節間に注射器（針の直径：0.45mm）で5〜8か所ずつ、葉に対しては葉肉部分に5〜8か所ずつ小針付消接種した。接種後、23℃に保たれた温室で30日間でわたって、経過を観察した。ペンケイソウの茎と葉に形成されたがんしゅに関しては、がんしゅの色、表面の凹凸および不定根や狭形腫（テラトーマ）形成の有無を指標として、形状に関する調査も行なった。

供試した分離菌77菌株のうち、Willungaで採集したアーモンドのがんしゅ由来の5菌株（1-2-6, 1-2-8, 1-2-27, 1-2-39および1-2-44：第3表）については、トマトの茎およびペンケイソウの茎と
葉にがんしゅを形成し、菌株間で病原性の弱弱に差は認められなかった。いずれの植物でも接種後5～7日目頃から接種部位に病徴が現れた。はじめは乳白色の小さな隆起として認められたがんしゅは時間の経過とともに肥大した（口絵写真参照）。判定時におけるがんしゅの大きさはいずれの植物でも長径が3mm以上となった。

ベンケイソウにおけるがんしゅの形状に関しても、これら5菌株は均一なパターンを示した。すなわち、いずれの菌株も乳白色で平滑な形状のがんしゅを誘導した。また、ベンケイソウの葉では奇形種の形成が、茎については不定根の誘導と奇形腫の形成のいずれもが観察された（口絵写真参照）。

これら5菌株以外の72菌株については、残念ながらトマトとベンケイソウに対する病原性がまったく認められなかったため、非病原菌と判定した。

（3）Tiプラスマドの確認

前項で病原性が確認できた5菌株について、目的とするTiプラスマドを保持しているかどうかを、Tiプラスマドに特異的なプライマー（VCF/VCR：Sawada et al., 1995）を用いたPCRによって確認した。すなわち、これらの菌株からDNAを抽出し、VCF/VCRプライマーセットを用いてTiプラスマドのvir領域の一部を增幅後、2％アガロースゲルで泳動して産物を確認した。その結果、これら5菌株のいずれからも、予想されるサイズ（約700bp）と一致する单一の強いシグナルが得られ、菌株間で増幅パターンに差異は認められなかった。前項でがんしゅ形成能が確認できたことと、このPCRの結果から、これらの菌株はいずれも目的とするTiプラスマドを保持しているものと判断した。

（4）同定

Bergey's Manual of Systematic Bacteriology vol.1（1984）では、Agrobacterium属細菌は植物に対する病原性と病徵に基づいて4つの種（A. tumefaciens, A. rhizogenes, A. radiobacterおよびA. rubi）に分類されている（Kersters and De Ley, 1984）。さらに、A. rubi以外の3種は、染色体DNA上にコードされた生理・生化学的性質などに基づいて3つのbiovar（biovar1、2および3）に細分されている（Kersters and De Ley, 1984）。したがって、Agrobacterium属細菌を同定するためには、接種試験によって病原性と病徵を確認して種の識別を行なった後、さらに細かい性状を明らかにしてbiovarを特定するという2段階のステップが必要となる（Kersters and De Ley, 1984; Bradbury, 1986; Schaad, 1988）。

上記の5菌株はグラム陰性、好気性で運動性を有していた。グルコースを酸化的にのみ分解して酸を産生し、グルコース含有培地上で菌体外多糖質を旺盛に産生した。さらに、いずれの供試培地においてもガスおよび色素を産生せず、カタラーゼ活性を有し、トマトおよびベンケイソウにがんしゅを形成した。以上の性状から、これらはAgrobacterium tumefaciensであることが明らかである。

ここでは、さらにbiovarを特定するために脂肪酸組成の分析を行なった。斜面培養菌の1白金耳量（湿菌体約50mg）を用い、Sasser（1990）の方法にしたがって脂肪酸メチルエステルを調整した。分析にはFID付ガスクロマトグラフ（MIDI automated Microbial Identification System）を用
いた。分析の結果、供試した5菌株はいずれも同様なパターンを示すことが明らかとなった。直鎖のモノ不飽和酸としては18：1の含量の多いことが認められた。シクロプロパン酸については19：0 CYCLOの組成比が高い。3-ヒドロキシ酸については、15：0 ISO 3OHのピークが特徴として認められた。一方、18：1 3OHに相当するピークは検出できなかった。以上の脂肪酸組成の特徴はbiovar 2と一致していることから、これら5菌株はAgrobacterium tumefaciens biovar 2と同定した。

4. 所感

今回の探索では、アーモンドのり病組織から目的とするAgrobacterium tumefaciens biovar 2を分離することができた。しかし、広範囲に探索を行なったにも関わらず、かんしゅ病のり病サンプルがなかなか見つからなかったり、サンプルから思うように目的とする菌が分離できなかったと、必ずしも順調とは言えない探索・収集行であった。目に見えにくい地帯や地下部に発生する病気であること、菌の生育が遅い上に雑菌が多い分で由来のサンプルが多いことに繋がる原因であると思われる。しかし、順調に仕事が進まず、精神的に参ってしまいましょかな時でも、二人で互いに励まし合いながら探索を続けることができた。二人分の予算を確保していただいた関係者の方々に深く感謝申し上げたい。

今回の探索では、加来久敏氏（農業生物資源研究所）、Peter J. Murphy氏（アデレード大学）、伊予住浩幸氏（静岡県農業試験場）をはじめ、農林水産技術会議事務局、農業生物資源研究所微生物遺伝資源担当部門、アデレード大学、静岡県農業試験場の多くの関係者の方々に大変お世話いただき、探索・収集を無事終えることができた。心からお礼申し上げます。

参考文献

1）松本省吾・町田泰則．1990．Tiプラスミドベクターによる植物への遺伝子導入．蛋白質核酸酵素．35：190-203。
Summary

Galls were observed on the trunk of almond in Willunga, South Australia. The galls were rough and light-to dark-brown in color and covered with dead and flaky tissues. The inner part of the galls contained a white and fleshy callus from which the causal bacteria, *Agrobacterium tumefaciens* (Smith and Townsend) Conn were isolated. These strains (1-2-6, 1-2-8, 1-2-27, 1-2-39 and 1-2-44) were highly aggressive in tomato and kalanchoe. Using the universal primer set (VCF/VCR) for PCR analysis to detect Ti plasmids, DNA fragments of 730-bp in length were amplified from them, indicating that they contain the plasmids. They were assigned to *A. tumefaciens* biovar 2 based on their phenotypic characteristics and fatty acid methyl ester (FAME) profiles.
第1表 探索・収集の行程（オーストラリア，1995.3.8～3.22）

<table>
<thead>
<tr>
<th>月日</th>
<th>行程</th>
<th>行動</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>成田——</td>
<td>移動</td>
<td>（空路，機内）</td>
</tr>
<tr>
<td>9</td>
<td>シドニー——アデレード</td>
<td>移動</td>
<td>（空路），採集行動打ち合わせ</td>
</tr>
<tr>
<td>10</td>
<td>アデレード——Willunga——アデレード</td>
<td>アデレード大学校部および協力依頼，探索・収集（アーモンド）</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>アデレード——Mclaren Vale——Mount Compass——Glenelg——アデレード</td>
<td>探索・収集（ブドウ，ブドウ），収集物整理</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>アデレード（ノーステラス地区周辺）</td>
<td>探索・収集（ブドウ），実験の打ち合わせおよび準備</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>アデレード</td>
<td>分離実験</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>アデレード——Barossa Valley——アデレード</td>
<td>分離実験，Agrobacterium 研究者と情報交換</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>アデレード</td>
<td>分離および移植，保存，大学およびCSIRO の研究施設見学</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>アデレード</td>
<td>分離および移植，大学関係者を懇談会</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>アデレード（University of Adelaide, Waite Campus およびその周辺）</td>
<td>探索・収集（バラ），Agrobacterium 研究者と情報交換</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>アデレード</td>
<td>分離実験，大学関係者と懇談会</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>アデレード</td>
<td>分離および移植，保存，収集物整理，結果のとりまとめ，大学関係者挨拶</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>シドニー——成田</td>
<td>移動</td>
<td>（空路）</td>
</tr>
<tr>
<td>21</td>
<td>シドニー——成田</td>
<td>移動</td>
<td>（空路），輸入検疫受検</td>
</tr>
<tr>
<td>22</td>
<td>成田——東京</td>
<td>移動</td>
<td>農林水産省報告</td>
</tr>
</tbody>
</table>

第2表 試料採取月日，宿主名および採取場所

<table>
<thead>
<tr>
<th>サンプル番号</th>
<th>採集日</th>
<th>宿主名</th>
<th>収集場所</th>
<th>発病状況その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>1～1～7</td>
<td>3.10</td>
<td>アーモンド</td>
<td>Willunga, South Australia</td>
<td>10～40年生の木の枝先に形成された直径5cm～30cmのこぶ</td>
</tr>
<tr>
<td>1～8～10</td>
<td>3.10</td>
<td>アーモンド</td>
<td>Willunga, South Australia</td>
<td>10～40年生の木の枝先50～100cm付近の幹に形成されたこぶ</td>
</tr>
<tr>
<td>2～1～3</td>
<td>3.11</td>
<td>ブドウ</td>
<td>Mount Compass, South Australia</td>
<td>地上部に形成された直径50～60cmくらいのこぶ</td>
</tr>
<tr>
<td>3</td>
<td>3.14</td>
<td>ブドウ</td>
<td>Barossa Valley, South Australia</td>
<td>根頭がんしぶ病発生地の土</td>
</tr>
<tr>
<td>4</td>
<td>3.14</td>
<td>ブドウ</td>
<td>Barossa Valley, South Australia</td>
<td>根頭がんしぶ病発生地の土</td>
</tr>
<tr>
<td>5</td>
<td>3.14</td>
<td>ブドウ</td>
<td>Barossa Valley, South Australia</td>
<td>根頭がんしぶ病発生地の土</td>
</tr>
<tr>
<td>6～1～3</td>
<td>3.17</td>
<td>バラ</td>
<td>Adelaide, South Australia</td>
<td>根元に形成されていた黒褐色で不整形のこぶ</td>
</tr>
</tbody>
</table>

第3表 Willunga 産アーモンド根頭がんしぶ病菌の特性

<table>
<thead>
<tr>
<th>トマトに対する病原性</th>
<th>ベンケイソウにおけるがんしぶの形状</th>
<th>PCR(VCF/VCR)による増幅</th>
<th>脂肪酸組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>形状</td>
<td>变定形</td>
<td>变定形</td>
<td>18:1</td>
</tr>
<tr>
<td>+</td>
<td>乳白色，平滑</td>
<td>+</td>
<td>乳白色，平滑</td>
</tr>
<tr>
<td>+</td>
<td>乳白色，平滑</td>
<td>+</td>
<td>乳白色，平滑</td>
</tr>
<tr>
<td>+</td>
<td>乳白色，平滑</td>
<td>+</td>
<td>乳白色，平滑</td>
</tr>
</tbody>
</table>

a）Willunga 産アーモンド（10～40年生）の枝先に形成されていたがんしぶからの分離菌（株保有番号：1-2-6, 1-2-8, 1-2-37, 1-2-39および1-2-44）。
b）T1プラスミドに特異な約700bpの DNA 形片の増幅が有無。
第1図 アデレード周辺における探査・収集径路
スリランカ国におけるイネ病原微生物の探索・収集1995

農業生物資源研究所 遺伝資源第一部 微生物探索評価研究チーム
落合 弘和
京都府立大学 農学部 植物病学研究室
堀野 修
北海道立十勝農業試験場
宮島 邦之

Survey and Collection of Rice Pathogenic Micoorganisms in Sri Lanka, 1995

Hirokazu OCHIAI
Laboratory of Microorganism Genetic Diversity
National Institute of Agrobiological Resources

Osamu HORINO
Laboratory of Plant Pathology
Kyoto Prefectural University

Kuniyuki MIYAJIMA
Tokachi Agricultural Experiment Station

1. 目的
米は、世界的に重要な主食穀物の一つである。その生産は、アジア各国をはじめ世界的規模で行われている。しかしながら、イネには様々な微生物による病害が存在し、その生産性・収量の向上を妨げる要因の一つとなっている。それ故、イネ病原微生物を把握することは、それらを解決する一つの手段として非常に重要である。

スリランカ国は、インドの南端付近のインド洋上、北緯5°55′～9°55′に位置し、北海道の面積の
約84%の国土を有し、そして気候は熱帯性モンスーンで、2つのモンスーンの影響により雨季と乾季が存在する。また国土は、北部及び海岸周辺地域の平地と、南部中央地域の標高約2000mを頂点とする高地からなり、狭い国土ではあるが、イネ病原微生物相の多様性が期待され、微生物遺伝資源の探索収集という面から興味深い地域である。今回の探索・収集は、我々の目のみならず世界の栽培地帯において、イネの最も重要な疫病であるイネ白葉枯病菌に注目して行った。イネ白葉枯病菌は、イネ品種に対し病原性の異なる様々なレースの存在が知られており、その寄生性分化・レース分化・地理的生態的分布を明らかにすることは、抵抗性品種の育種並びに、地域的に抵抗性品種栽培の情報を得ることになる。また、イネ白葉枯病菌は病原細菌のレースの多様性、イネ品種の抵抗性遺伝子分析がよく行われ、近年の分子生物学研究の素材として我々の目を惹き世界的に行われている。当農水省においても諸先哲方の尽力でアジア各国産並びに日本産イネ白葉枯病菌の探索収集が行われており、その病原性について検討されている。そこでその一環として、スリランカ国におけるイネ病原微生物、特にイネ白葉枯病菌を中心にその分布を広く調査し、さらに探索・収集を行い、そのレース解析・遺伝的多様解析を行うことによって様々な情報を得ることを目的とした。

2. 実施の概要

1995年2月25日から3月8日の12日間の日程でスリランカ国を訪問し、ベラデニヤにある園芸開発研究所（Horticultural Research and Development Institute）のDr. I. J. de Zoysa氏との共同研究としてイネ病原微生物の探索収集を行った。現在、東部及び北部地域は、外国人の立ち入りを規制しているため、それ以外の地域を探索収集の対象とし、活動を行った。しかしながら狭いとはいえ、北極道の約8割の面積を有する国土と、限られた滞在日数のため、全土を網羅することは不可能であると判断し、標高差を指標とした特定の地域（平地・中地・高地）にターゲットを絞り探索日程を計画した（表1・図1）。探索隊は、日本側3名と、現地通訳・案内を担当した園芸開発研究所の研究員D. D. B. Dodanwela氏の計4名で、古都キャンデーを拠点とした。探索収集微生物は、イネの細菌病の一つであるイネ白葉枯病菌の罹病葉を中心に、一部もちは病他の罹病葉も合わせて収集した。調査は日程の都合上、前後半二つに分けて行った。前半2／27～3／1は、ベラデニヤにあるJICA植物遺伝資源センターの渡辺氏と坂本氏の協力を受けて、ベラデニヤ周り（中地地域・標高約500m）及びキャンデー道路周辺の圃場15地点にて調査を行い、イネ白葉枯病罹病葉を中心に38サンプルを収集した。後半3／2～3／5は、キャンデーを起点とした1泊2日の探索旅行を2回行った。前期は、キャンデーより北部地域（クルネガラ、ダンブラ、ボロンナルワ：平地）の稲作地帯を調査し、途中、バタラゴダの中央イネ育種試験場（Central Rice Breeding Station）とマハイルパラマの作物開発研究所（Field Crops Research and Development Institute）の2つ試験研究機関を表敬訪問し、イネの病害についての情報収集・交流を計った。調査は14地点で行い、33サンプルを収集した。後期は、キャンデーより南部及び南部地域（ヌワラエリヤ、バドゥラ：高地とトラトゥナプラ周辺：平地から中地）を調査し、16地点、27サンプルを収集した。3／6は、コロンボから南部地域、ポンプウェラの地域農業研究センター（Regional Agricultural Research Centre）を表敬訪問し、情報収集・交流を計った。合計、45地点から98の罹病葉サンプル
の収集ができ、探索としては、一定の成果を上げることができた。尚、採集地点に関して、同一地点の場合は、水系の異なる水田・栽培品種の異なる水田から収集を行った。現場で採集した罹病葉は採集後、封筒に入れ、ある程度乾燥させた後、粒状シリカゲルを乾燥剤として加えたタッパー内で保管した。乾燥条件を維持するため、毎日シリカゲルの交換を行いながら持ち帰った。

3. 収集の成果

持ち帰った罹病葉サンプルから、以下に示した方法で病原菌の分離、その特性解析を行った。

（1）病原菌の分離（イネ白葉枯病菌）

採集した罹病葉の病斑部分をはさみで5 mm程度の大きさに細かく切断し、滅菌した乳鉢に入れ、滅菌水1 ccを添加して捣碎した。この捣碎液を滅菌水で段階希釈し、そして各希釈液を1 ccずつシャーレに加え、予め溶解し保温したPSA培地（ペプトン10g・ショ糖10g・L-グルタミン酸ソーダ1 g・寒天15g／水1000cc）を適量添加・混合後、28℃で数日間培養した。形成されたコロニーでイネ白葉枯病菌に特徴的なものをピックアップし、脳本培地に移植した。また、いもち病菌として分離された菌株の来歴を示したものが表2である。おもに病菌も分離後、センターバンクに登録した。尚、いもち病菌の分離は、農業生物資源研究所・微生物探索評価研究チームの西村が行った。

（2）病原性の検定

特性評価の一つとして、分離イネ白葉枯病菌の病原性の検定を行った。イネ品種は、日本におけるレースの判別品種である南原風・黄玉・Te-Tep・中国45号・Java14を用いて、日本産菌株との比較を行った。さらに、IR-8・IR-20・IR-24を加えて検討した。一部の菌株は、トヨシキを反復親とした準同質遺伝子系統（near-isogenic lines）であるIR-BB101・102・103・104・105・107・108・110・111とトヨシキを用いて、病原性を検討した。接種方法は、剪葉接種法を用いた。

（3）遺伝的多様性の解析

特性評価の一つとして、RFLPによる多型解析を行った。プローブはイネ白葉枯病菌より単離された反復配列を含む断片用いた。検出された4 Kb以下のバンドを基に、日本産各レースの代表菌株と比較を行った。

（4）結果と考察

①56の罹病葉サンプルのうち42からイネ白葉枯病菌が分離された。分離されなかったサンプルが10数点あったが、これはイネ白葉枯病と断定できなかったイネ葉もサンプルとして採集したためであり、保存状態が悪いためではない。罹病葉より単コロニー分離されたイネ白葉枯病菌の来歴をまとめるのが表3である。これらの菌株は、脳本培地で斜面培養後、スキムミルクを分散媒とした液に懸濁し、フリーザーで凍結保存した。接種試験で病原性を確認後、センターバンクに登録した。

②分離イネ白葉枯病菌の病原性を調査した結果を、表4に示した。狭い国土ではあるが、水系を異にする多数の地域でサンプリングを実施したので、接種試験前の予想は様々な病原性を有する菌株の存在が期待された。しかしながら、現実には図2に示したように、日本の判別品種に対する病原性は、分離された菌株の約97%が2つのタイプに類別された。しかもそれら、日本のレースIII・IVと同じタイプであった。そこでさらにIR-8・IR-20・IR-24を用いて病原性に検討した。日本のレース
スIIIは IR-8に対する病原性の有無で、III B・III A の 2 つに細分類されるが、レースIIIタイプのスリランカ産薬系はすべて IR-8に対して病原性を有し、III Bタイプであった。また、本試験では IR-20に対しても同様ですべての菌系が病原性を有していたが、この点に関しては、さらに準同質遺伝子系統等のイネ品種を用いて再検討したいと考える。

③準同質遺伝子系统 (near-isogenic lines) IR-BB シリーズを判別品種とした病原性調査の結果を表 5 に示した。本試験は、日本の判別品種に含まれていない他非抗性遺伝子を有している品種をも含めて行った。一部の菌株のみの結果であるが、BB-105・107・108において、病原性の異なる菌株が存在した。このことは、スリランカ産薬系の多様性は、小さいとは断定できないことを示唆している。さらに詳細に解析する必要があると考えられる。

④反復配列を含む断片をプローブとした RFLP 解析で、4 Kb以下の中間パターンを模式化したものを図 3、各 RFLP タイプの割合を図 4 に示した。その結果、制限酵素 BamHI では 18 タイプの多型が明らかとなり、うちタイプレ・1・2・4 が主なパターンであった。このことは病原性の結果と異なり、スリランカ産薬系は遺伝的多様性が大きいことを示唆している。これらの多型を日本産各レースの代表菌株の RFLP パターンと比較し、4 K以下の中間パターンを基にクラスター解析を行い、その遺伝的類縁関係を検討した結果を図 5 に示した。この図から明らかのように、日本産レース IA を除いて、スリランカ産薬系は独自のクラスターを形成し、日本産薬系とは異なっていた。このことは、病原性において日本のレース III・IV と同じ菌株がほとんどを占めていたにもかかわらず、反復配列断片を指標とした RFLP 解析では、遺伝的には異なるという結果を示すものである。この場合、病原性に関与するプローブの解析でないため、直接的に病原性を論じることはできないが、細菌の地理的分化という観点からは、興味深い結果である。

⑤全体的に採集地域・イネ品種と病原性・RFLP タイプとの関係はなかったが、国単位で比較した場合、スリランカ産薬系は、日本産薬系とは異なっていた。このことは、それぞれ独自の進化の結果であると推察される。今後は、準同質遺伝子系統 (near-isogenic lines) IR-BB シリーズを判別品種とした病原性調査を進めるとともに、病原性関連遺伝子 AVR gene をプローブとした多型解析を行い、さらに検討する必要がある。

4. 所感

今回のスリランカにおける探索収集進行は、短期間でしかも同国の祭日と重なったため、かなり強行的な日程で行った。また季節、平年より雨量が少なくなイネ白葉枯病の常発地域においても、多発生を見ることはできず、周辺圃場のごく一部にその発生を見るとした。その発生も、特徴的で木陰付近で多く観察された。しかしながら、探索・収集は多くの方々のお世話になり順調に実施することができた。

スリランカは狭い国土であるが、地理的位置や標高の関係で気候的には異なり、そのためイネの収穫を行っている地域や田植えをしている地域が混在し、全土の探索には、その時期の設定を検討する必要がある。それ故、多様性の大きな菌株群、また島国故の閉鎖性により独自の文化・進化を遂げた菌株の存在が期待され、再度改めて調査したいところであると思っている。また共同研
究を行った園芸開発研究所はじめ、いくつかの試験研究機関との交流の機会を得たことは、今後の遺伝資源探索収集において有意義であった。

5. 謝辞

今回の探索・収集は、園芸開発研究所（Horticultural Research and Development Institute）との共同研究として实施された。同研究所、植物病理学部門のDr. I. J. de Zoysa氏をはじめ、国際協力事業団スリランカ植物遺伝資源センターの渡辺進二チームリーダー、坂本敏夫、カンパハ開発プロジェクトの西野氏ら多くの方々の多大のご助力をいただいた。ここに記して厚く感謝の意を表する。また、このような機会を賜り、種々ご尽力いただいた農林水産省微生物遺伝資源事業関係の皆様に深謝申し上げます。

Summary

Bacterial leaf blight, caused by *Xanthomonas oryzae* pv. *oryzae*, is one of the most devastating diseases in the world. The causal organism is classified into races based on the pathogenicity to the differential varieties. To study race differentiation, geographical-ecological distribution and genetic diversity of this bacteria is the most important subject, and acquired information is essential for breeding and selecting cultivation of resistant rice variety.

For this purpose, many diseased rice leaves were collected at different area in Sri Lanka in February-March 1995. One hundred and forty-five were isolated from forty-two sampling points. All isolates were inoculated to five Japanese differential varieties, analyzed genetic diversity by RFLP and compared with the representative strains of Japanese six races. For pathogenicity, most of the isolates were similar to Japanese race III or IV type. However, for RFLP analysis, they were distinguishable from Japanese strains, and cluster analysis based on RFLP patterns showed that they were belonged to their own cluster differed from Japanese ones.
<table>
<thead>
<tr>
<th>月 日</th>
<th>行 程</th>
<th>宿 泊 地</th>
<th>行 動 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2月25日（土）</td>
<td>成田発、コロンボ着</td>
<td>コロンボ</td>
<td>移動（空路）</td>
</tr>
<tr>
<td>2月26日（日）</td>
<td>コロンボ→キャンデー</td>
<td>キャンデー</td>
<td>移動（陸路）</td>
</tr>
<tr>
<td>2月27日（月）</td>
<td>キャンデー（ベラデニヤ）</td>
<td>キャンデー</td>
<td>JICA 遺伝資源センター訪問、探索収集</td>
</tr>
<tr>
<td>2月28日（火）</td>
<td>キャンデー→コロンボ</td>
<td>コロンボ</td>
<td>関連開発研究所訪問、探索打合せ、移動・収集</td>
</tr>
<tr>
<td>3月1日（水）</td>
<td>コロンボ→キャンデー</td>
<td>キャンデー</td>
<td>大使との昼食会参加、移動・収集</td>
</tr>
<tr>
<td>3月2日（木）</td>
<td>キャンデー→クルネガラ→ダムブラ→ポロンナルワ</td>
<td>ポロンナルワ</td>
<td>移動・収集、中央イネ育種試験場、作物開発研究所訪問</td>
</tr>
<tr>
<td>3月3日（金）</td>
<td>ポロンナルワ→マークレー→キャンデー</td>
<td>キャンデー</td>
<td>移動・収集</td>
</tr>
<tr>
<td>3月4日（土）</td>
<td>キャンデー→ヌワラエリヤ→パドゥラ</td>
<td>パドゥラ</td>
<td>移動・収集</td>
</tr>
<tr>
<td>3月5日（日）</td>
<td>パドゥラ→ラトゥナブラ→コロンボ</td>
<td>コロンボ</td>
<td>移動・収集</td>
</tr>
<tr>
<td>3月6日（月）</td>
<td>コロンボ→ポンブウェラ→コロンボ</td>
<td>コロンボ</td>
<td>移動・収集、地域農業研究センター訪問</td>
</tr>
<tr>
<td>3月7日（火）</td>
<td>コロンボ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3月8日（水）</td>
<td>成田着</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図1 スリランカにおける病原収集経路

表2 スリランカにおいて採集したイネいもち病菌分離菌株一覧

<table>
<thead>
<tr>
<th>登録菌株番号</th>
<th>採取地名</th>
<th>イネ品種</th>
<th>採取日</th>
<th>レース</th>
<th>MAFF番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL72-1-2</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>106.4</td>
<td>237263</td>
</tr>
<tr>
<td>SL72-2-1</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>106.4</td>
<td>237264</td>
</tr>
<tr>
<td>SL72-4-1</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>106.4</td>
<td>237265</td>
</tr>
<tr>
<td>SL72-5-6</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>106.4</td>
<td>237266</td>
</tr>
<tr>
<td>SL72-6-8</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>006.4</td>
<td>237267</td>
</tr>
<tr>
<td>SL72-7-6</td>
<td>Nawadadora</td>
<td>Mahawee</td>
<td>3月4日</td>
<td>106.4</td>
<td>237268</td>
</tr>
<tr>
<td>SL73-1</td>
<td>Halbodagama</td>
<td>H4</td>
<td>3月4日</td>
<td>006.4</td>
<td>237269</td>
</tr>
<tr>
<td>SL73-2</td>
<td>Halbodagama</td>
<td>H4</td>
<td>3月4日</td>
<td>006.4</td>
<td>237270</td>
</tr>
<tr>
<td>SL73-3</td>
<td>Halbodagama</td>
<td>H4</td>
<td>3月4日</td>
<td>006.4</td>
<td>237271</td>
</tr>
<tr>
<td>菌株整理番号</td>
<td>採取地名</td>
<td>イネ品種</td>
<td>採取日</td>
<td>MAFF登録番号</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>SL9501</td>
<td>Peradeniya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210954</td>
<td></td>
</tr>
<tr>
<td>SL9502</td>
<td>Peradeniya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210955</td>
<td></td>
</tr>
<tr>
<td>SL9503</td>
<td>Peradeniya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210956</td>
<td></td>
</tr>
<tr>
<td>SL9504</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210957</td>
<td></td>
</tr>
<tr>
<td>SL9505</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210958</td>
<td></td>
</tr>
<tr>
<td>SL9506</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210959</td>
<td></td>
</tr>
<tr>
<td>SL9507</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210960</td>
<td></td>
</tr>
<tr>
<td>SL9508</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210961</td>
<td></td>
</tr>
<tr>
<td>SL9509</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210962</td>
<td></td>
</tr>
<tr>
<td>SL9510</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210963</td>
<td></td>
</tr>
<tr>
<td>SL9511</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210964</td>
<td></td>
</tr>
<tr>
<td>SL9512</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210965</td>
<td></td>
</tr>
<tr>
<td>SL9513</td>
<td>Nanu-Oya</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210966</td>
<td></td>
</tr>
<tr>
<td>SL9514</td>
<td>Kadugannawa</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210967</td>
<td></td>
</tr>
<tr>
<td>SL9515</td>
<td>Kadugannawa</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210968</td>
<td></td>
</tr>
<tr>
<td>SL9516</td>
<td>Kadugannawa</td>
<td>BG34-6</td>
<td>2月27日</td>
<td>210969</td>
<td></td>
</tr>
<tr>
<td>SL9517</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210970</td>
<td></td>
</tr>
<tr>
<td>SL9518</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210971</td>
<td></td>
</tr>
<tr>
<td>SL9519</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210972</td>
<td></td>
</tr>
<tr>
<td>SL9520</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210973</td>
<td></td>
</tr>
<tr>
<td>SL9521</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210974</td>
<td></td>
</tr>
<tr>
<td>SL9522</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210975</td>
<td></td>
</tr>
<tr>
<td>SL9523</td>
<td>Hingula</td>
<td>BG ? (samba type)</td>
<td>2月27日</td>
<td>210976</td>
<td></td>
</tr>
<tr>
<td>SL9524</td>
<td>Mawanella</td>
<td>BG11</td>
<td>2月27日</td>
<td>210977</td>
<td></td>
</tr>
<tr>
<td>SL9525</td>
<td>Mawanella</td>
<td>BG11</td>
<td>2月27日</td>
<td>210978</td>
<td></td>
</tr>
<tr>
<td>SL9526</td>
<td>Mawanella</td>
<td>BG11</td>
<td>2月27日</td>
<td>210979</td>
<td></td>
</tr>
<tr>
<td>SL9527</td>
<td>Penideniya</td>
<td>BG11</td>
<td>2月27日</td>
<td>210980</td>
<td></td>
</tr>
<tr>
<td>SL9528</td>
<td>Penideniya</td>
<td>BG11</td>
<td>2月27日</td>
<td>210981</td>
<td></td>
</tr>
<tr>
<td>SL9529</td>
<td>Penideniya</td>
<td>BG11</td>
<td>2月27日</td>
<td>210982</td>
<td></td>
</tr>
<tr>
<td>SL9530</td>
<td>Meewathura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210983</td>
<td></td>
</tr>
<tr>
<td>SL9531</td>
<td>Meewathura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210984</td>
<td></td>
</tr>
<tr>
<td>SL9532</td>
<td>Meewathura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210985</td>
<td></td>
</tr>
<tr>
<td>SL9533</td>
<td>Koshinna</td>
<td>BG11</td>
<td>2月27日</td>
<td>210986</td>
<td></td>
</tr>
<tr>
<td>SL9534</td>
<td>Koshinna</td>
<td>BG11</td>
<td>2月27日</td>
<td>210987</td>
<td></td>
</tr>
<tr>
<td>SL9535</td>
<td>Koshinna</td>
<td>BG11</td>
<td>2月27日</td>
<td>210988</td>
<td></td>
</tr>
<tr>
<td>SL9536</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210989</td>
<td></td>
</tr>
<tr>
<td>SL9537</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210990</td>
<td></td>
</tr>
<tr>
<td>SL9538</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210991</td>
<td></td>
</tr>
<tr>
<td>SL9539</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210992</td>
<td></td>
</tr>
<tr>
<td>SL9540</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210993</td>
<td></td>
</tr>
<tr>
<td>SL9541</td>
<td>Udukundura</td>
<td>BG11</td>
<td>2月27日</td>
<td>210994</td>
<td></td>
</tr>
<tr>
<td>SL9542</td>
<td>Warakapola</td>
<td>samba type</td>
<td>2月28日</td>
<td>210995</td>
<td></td>
</tr>
<tr>
<td>SL9543</td>
<td>Warakapola</td>
<td>samba type</td>
<td>2月28日</td>
<td>210996</td>
<td></td>
</tr>
<tr>
<td>SL9544</td>
<td>Warakapola</td>
<td>samba type</td>
<td>2月28日</td>
<td>210997</td>
<td></td>
</tr>
<tr>
<td>SL9545</td>
<td>Danovita</td>
<td>BG11</td>
<td>3月1日</td>
<td>210998</td>
<td></td>
</tr>
<tr>
<td>SL9546</td>
<td>Danovita</td>
<td>BG11</td>
<td>3月1日</td>
<td>210999</td>
<td></td>
</tr>
<tr>
<td>SL9547</td>
<td>Danovita</td>
<td>BG11</td>
<td>3月1日</td>
<td>211000</td>
<td></td>
</tr>
<tr>
<td>SL9548</td>
<td>Weuda</td>
<td>BG11</td>
<td>3月1日</td>
<td>211001</td>
<td></td>
</tr>
<tr>
<td>SL9549</td>
<td>Weuda</td>
<td>BG11</td>
<td>3月1日</td>
<td>211002</td>
<td></td>
</tr>
<tr>
<td>SL9550</td>
<td>Weuda</td>
<td>BG11</td>
<td>3月1日</td>
<td>211003</td>
<td></td>
</tr>
<tr>
<td>SL9551</td>
<td>Polonnaruwa</td>
<td>BG11</td>
<td>3月3日</td>
<td>211004</td>
<td></td>
</tr>
<tr>
<td>SL9552</td>
<td>Polonnaruwa</td>
<td>BG11</td>
<td>3月3日</td>
<td>211005</td>
<td></td>
</tr>
<tr>
<td>SL9553</td>
<td>Polonnaruwa</td>
<td>BG11</td>
<td>3月3日</td>
<td>211006</td>
<td></td>
</tr>
<tr>
<td>SL9554</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211007</td>
<td></td>
</tr>
<tr>
<td>SL9555</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211008</td>
<td></td>
</tr>
<tr>
<td>SL9556</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211009</td>
<td></td>
</tr>
<tr>
<td>SL9557</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211010</td>
<td></td>
</tr>
<tr>
<td>SL9558</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211011</td>
<td></td>
</tr>
<tr>
<td>SL9559</td>
<td>Ranweli</td>
<td>BG11</td>
<td>3月3日</td>
<td>211012</td>
<td></td>
</tr>
</tbody>
</table>

—32—
<table>
<thead>
<tr>
<th>菌株整理番号</th>
<th>採取地名</th>
<th>イネ品種</th>
<th>採取日</th>
<th>MAFF登録番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL9560</td>
<td>Ranweli</td>
<td></td>
<td>3月3日</td>
<td>211013</td>
</tr>
<tr>
<td>SL9561</td>
<td>Palapathwela</td>
<td></td>
<td>3月3日</td>
<td>211014</td>
</tr>
<tr>
<td>SL9562</td>
<td>Peradeniya</td>
<td></td>
<td>3月3日</td>
<td>211015</td>
</tr>
<tr>
<td>SL9563</td>
<td>Peradeniya</td>
<td></td>
<td>3月3日</td>
<td>211016</td>
</tr>
<tr>
<td>SL9564</td>
<td>Totagamuwa</td>
<td></td>
<td>3月3日</td>
<td>211017</td>
</tr>
<tr>
<td>SL9565</td>
<td>Totagamuwa</td>
<td></td>
<td>3月3日</td>
<td>211018</td>
</tr>
<tr>
<td>SL9566</td>
<td>Totagamuwa</td>
<td></td>
<td>3月3日</td>
<td>211019</td>
</tr>
<tr>
<td>SL9567</td>
<td>Totagamuwa</td>
<td></td>
<td>3月3日</td>
<td>211020</td>
</tr>
<tr>
<td>SL9568</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211021</td>
</tr>
<tr>
<td>SL9569</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211022</td>
</tr>
<tr>
<td>SL9570</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211023</td>
</tr>
<tr>
<td>SL9571</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211024</td>
</tr>
<tr>
<td>SL9572</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211025</td>
</tr>
<tr>
<td>SL9573</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211026</td>
</tr>
<tr>
<td>SL9574</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211027</td>
</tr>
<tr>
<td>SL9575</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211028</td>
</tr>
<tr>
<td>SL9576</td>
<td>Alawathugoda</td>
<td></td>
<td>3月3日</td>
<td>211029</td>
</tr>
<tr>
<td>SL9577</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211030</td>
</tr>
<tr>
<td>SL9578</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211031</td>
</tr>
<tr>
<td>SL9579</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211032</td>
</tr>
<tr>
<td>SL9580</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211033</td>
</tr>
<tr>
<td>SL9581</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211034</td>
</tr>
<tr>
<td>SL9582</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211035</td>
</tr>
<tr>
<td>SL9583</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211036</td>
</tr>
<tr>
<td>SL9584</td>
<td>Akurana</td>
<td></td>
<td>3月3日</td>
<td>211037</td>
</tr>
<tr>
<td>SL9585</td>
<td>Halbodagama</td>
<td>H4(Batalagoda)</td>
<td>3月4日</td>
<td>211038</td>
</tr>
<tr>
<td>SL9586</td>
<td>Halbodagama</td>
<td>H4(Batalagoda)</td>
<td>3月4日</td>
<td>211039</td>
</tr>
<tr>
<td>SL9587</td>
<td>Halbodagama</td>
<td>H4(Batalagoda)</td>
<td>3月4日</td>
<td>211040</td>
</tr>
<tr>
<td>SL9588</td>
<td>Halbodagama</td>
<td>H4(Batalagoda)</td>
<td>3月4日</td>
<td>211041</td>
</tr>
<tr>
<td>SL9589</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211042</td>
</tr>
<tr>
<td>SL9590</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211043</td>
</tr>
<tr>
<td>SL9591</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211044</td>
</tr>
<tr>
<td>SL9592</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211045</td>
</tr>
<tr>
<td>SL9593</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211046</td>
</tr>
<tr>
<td>SL9594</td>
<td>Kalupahanha</td>
<td>BG400-1</td>
<td>3月5日</td>
<td>211047</td>
</tr>
<tr>
<td>SL9595</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211048</td>
</tr>
<tr>
<td>SL9596</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211049</td>
</tr>
<tr>
<td>SL9597</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211050</td>
</tr>
<tr>
<td>SL9598</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211051</td>
</tr>
<tr>
<td>SL9599</td>
<td>Halpae ?</td>
<td>BG94-1 ?</td>
<td>?</td>
<td>211052</td>
</tr>
<tr>
<td>SL95100</td>
<td>Halpae ?</td>
<td>BG94-1 ?</td>
<td>?</td>
<td>211053</td>
</tr>
<tr>
<td>SL95101</td>
<td>Halpae ?</td>
<td>BG94-1 ?</td>
<td>?</td>
<td>211054</td>
</tr>
<tr>
<td>SL95102</td>
<td>Halpae ?</td>
<td>BG94-1 ?</td>
<td>?</td>
<td>211055</td>
</tr>
<tr>
<td>SL95103</td>
<td>Belihul - oya</td>
<td>BG104</td>
<td>3月5日</td>
<td>211056</td>
</tr>
<tr>
<td>SL95104</td>
<td>Belihul - oya</td>
<td>BG104</td>
<td>3月5日</td>
<td>211057</td>
</tr>
<tr>
<td>SL95105</td>
<td>Belihul - oya</td>
<td>BG104</td>
<td>3月5日</td>
<td>211058</td>
</tr>
<tr>
<td>SL95106</td>
<td>Belihul - oya</td>
<td>BG104</td>
<td>3月5日</td>
<td>211059</td>
</tr>
<tr>
<td>SL95107</td>
<td>Rathpalawinna</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211060</td>
</tr>
<tr>
<td>SL95108</td>
<td>Rathpalawinna</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211061</td>
</tr>
<tr>
<td>SL95109</td>
<td>Rathpalawinna</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211062</td>
</tr>
<tr>
<td>菌株整理番号</td>
<td>採取地名</td>
<td>イネ品種</td>
<td>採取日</td>
<td>MAFF登録番号</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>SL95110</td>
<td>Rathpawinna</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211063</td>
</tr>
<tr>
<td>SL95111</td>
<td>Palakand</td>
<td>BG300</td>
<td>3月5日</td>
<td>211064</td>
</tr>
<tr>
<td>SL95112</td>
<td>Palakand</td>
<td>BG300</td>
<td>3月5日</td>
<td>211065</td>
</tr>
<tr>
<td>SL95113</td>
<td>Palakand</td>
<td>BG300</td>
<td>3月5日</td>
<td>211066</td>
</tr>
<tr>
<td>SL95114</td>
<td>Palakand</td>
<td>BG300</td>
<td>3月5日</td>
<td>211067</td>
</tr>
<tr>
<td>SL95115</td>
<td>Opayake</td>
<td>Samba type</td>
<td>3月5日</td>
<td>211068</td>
</tr>
<tr>
<td>SL95116</td>
<td>Opayake</td>
<td>Samba type</td>
<td>3月5日</td>
<td>211069</td>
</tr>
<tr>
<td>SL95117</td>
<td>Opayake</td>
<td>Samba type</td>
<td>3月5日</td>
<td>211070</td>
</tr>
<tr>
<td>SL95118</td>
<td>Opayake</td>
<td>Samba type</td>
<td>3月5日</td>
<td>211071</td>
</tr>
<tr>
<td>SL95119</td>
<td>Meegahagoda</td>
<td></td>
<td>3月5日</td>
<td>211072</td>
</tr>
<tr>
<td>SL95120</td>
<td>Meegahagoda</td>
<td></td>
<td>3月5日</td>
<td>211073</td>
</tr>
<tr>
<td>SL95121</td>
<td>Meegahagoda</td>
<td></td>
<td>3月5日</td>
<td>211074</td>
</tr>
<tr>
<td>SL95122</td>
<td>Meegahagoda</td>
<td></td>
<td>3月5日</td>
<td>211075</td>
</tr>
<tr>
<td>SL95123</td>
<td>Kuruwita</td>
<td></td>
<td>3月5日</td>
<td>211076</td>
</tr>
<tr>
<td>SL95124</td>
<td>Kuruwita</td>
<td></td>
<td>3月5日</td>
<td>211077</td>
</tr>
<tr>
<td>SL95125</td>
<td>Kuruwita</td>
<td></td>
<td>3月5日</td>
<td>211078</td>
</tr>
<tr>
<td>SL95126</td>
<td>Kuruwita</td>
<td></td>
<td>3月5日</td>
<td>211079</td>
</tr>
<tr>
<td>SL95127</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211080</td>
</tr>
<tr>
<td>SL95128</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211081</td>
</tr>
<tr>
<td>SL95129</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211082</td>
</tr>
<tr>
<td>SL95130</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211083</td>
</tr>
<tr>
<td>SL95131</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211084</td>
</tr>
<tr>
<td>SL95132</td>
<td>Eheliyagoda</td>
<td></td>
<td>3月5日</td>
<td>211085</td>
</tr>
<tr>
<td>SL95133</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211086</td>
</tr>
<tr>
<td>SL95134</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211087</td>
</tr>
<tr>
<td>SL95135</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211088</td>
</tr>
<tr>
<td>SL95136</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211089</td>
</tr>
<tr>
<td>SL95137</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211090</td>
</tr>
<tr>
<td>SL95138</td>
<td>Kaluaggle</td>
<td></td>
<td>3月5日</td>
<td>211091</td>
</tr>
<tr>
<td>SL95139</td>
<td>Polonnaruwa</td>
<td>Mahasan</td>
<td>3月5日</td>
<td>211092</td>
</tr>
<tr>
<td>SL95140</td>
<td>Polonnaruwa</td>
<td>Mahasan</td>
<td>3月5日</td>
<td>211093</td>
</tr>
<tr>
<td>SL95141</td>
<td>Polonnaruwa</td>
<td>Mahasan</td>
<td>3月5日</td>
<td>211094</td>
</tr>
<tr>
<td>SL95142</td>
<td>Polonnaruwa</td>
<td>Mahasan</td>
<td>3月5日</td>
<td>211095</td>
</tr>
<tr>
<td>SL95143</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211096</td>
</tr>
<tr>
<td>SL95144</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211097</td>
</tr>
<tr>
<td>SL95145</td>
<td>Halpae</td>
<td>BG94-1</td>
<td>3月5日</td>
<td>211098</td>
</tr>
</tbody>
</table>
表4-1 分離イネ白葉枯病菌菌株の各イネ品種に対する病原性

<table>
<thead>
<tr>
<th>菌株整理番号</th>
<th>金南風</th>
<th>黄玉</th>
<th>Te-tep</th>
<th>中国45号</th>
<th>Java14</th>
<th>IR-8</th>
<th>IR-20</th>
<th>Cas209</th>
<th>IR-24</th>
<th>MAFF登録番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL9501</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210954</td>
</tr>
<tr>
<td>SL9502</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210955</td>
</tr>
<tr>
<td>SL9503</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210956</td>
</tr>
<tr>
<td>SL9504</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210957</td>
</tr>
<tr>
<td>SL9505</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210958</td>
</tr>
<tr>
<td>SL9506</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210959</td>
</tr>
<tr>
<td>SL9507</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210960</td>
</tr>
<tr>
<td>SL9508</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210961</td>
</tr>
<tr>
<td>SL9509</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210962</td>
</tr>
<tr>
<td>SL9510</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210963</td>
</tr>
<tr>
<td>SL9511</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210964</td>
</tr>
<tr>
<td>SL9512</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210965</td>
</tr>
<tr>
<td>SL9513</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210966</td>
</tr>
<tr>
<td>SL9514</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210967</td>
</tr>
<tr>
<td>SL9515</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210968</td>
</tr>
<tr>
<td>SL9516</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210969</td>
</tr>
<tr>
<td>SL9517</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210970</td>
</tr>
<tr>
<td>SL9518</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210971</td>
</tr>
<tr>
<td>SL9519</td>
<td>O</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210972</td>
</tr>
<tr>
<td>SL9520</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210973</td>
</tr>
<tr>
<td>SL9521</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210974</td>
</tr>
<tr>
<td>SL9522</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210975</td>
</tr>
<tr>
<td>SL9523</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210976</td>
</tr>
<tr>
<td>SL9524</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210977</td>
</tr>
<tr>
<td>SL9525</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210978</td>
</tr>
<tr>
<td>SL9526</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210979</td>
</tr>
<tr>
<td>SL9527</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210980</td>
</tr>
<tr>
<td>SL9528</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210981</td>
</tr>
<tr>
<td>SL9529</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210982</td>
</tr>
<tr>
<td>SL9530</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210983</td>
</tr>
<tr>
<td>SL9531</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210984</td>
</tr>
<tr>
<td>SL9532</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210985</td>
</tr>
<tr>
<td>SL9533</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210986</td>
</tr>
<tr>
<td>SL9534</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210987</td>
</tr>
<tr>
<td>SL9135</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210988</td>
</tr>
<tr>
<td>SL9536</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210989</td>
</tr>
<tr>
<td>SL9537</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210990</td>
</tr>
<tr>
<td>SL9538</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210991</td>
</tr>
<tr>
<td>SL9539</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210992</td>
</tr>
<tr>
<td>SL9540</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210993</td>
</tr>
<tr>
<td>SL9541</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210994</td>
</tr>
<tr>
<td>SL9542</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210995</td>
</tr>
<tr>
<td>SL9543</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210996</td>
</tr>
<tr>
<td>SL9544</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210997</td>
</tr>
<tr>
<td>SL9545</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210998</td>
</tr>
<tr>
<td>SL9546</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>210999</td>
</tr>
<tr>
<td>SL9547</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211000</td>
</tr>
<tr>
<td>SL9548</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211001</td>
</tr>
<tr>
<td>SL9549</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211002</td>
</tr>
<tr>
<td>SL9550</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211003</td>
</tr>
</tbody>
</table>
表4-2 分離イネ白葉枯病菌菌株の各イネ品種に対する病原性

<table>
<thead>
<tr>
<th>菌株整理番号</th>
<th>金南風</th>
<th>黄玉</th>
<th>Te-tep</th>
<th>中国45号</th>
<th>Java14</th>
<th>IR-8</th>
<th>IR-20</th>
<th>Cas209</th>
<th>IR-24</th>
<th>MAFF登録番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL9551</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211004</td>
</tr>
<tr>
<td>SL9552</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211005</td>
</tr>
<tr>
<td>SL9553</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211006</td>
</tr>
<tr>
<td>SL9554</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211007</td>
</tr>
<tr>
<td>SL9555</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211008</td>
</tr>
<tr>
<td>SL9556</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211009</td>
</tr>
<tr>
<td>SL9557</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211010</td>
</tr>
<tr>
<td>SL9558</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211011</td>
</tr>
<tr>
<td>SL9559</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211012</td>
</tr>
<tr>
<td>SL9560</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211013</td>
</tr>
<tr>
<td>SL9561</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211014</td>
</tr>
<tr>
<td>SL9562</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211015</td>
</tr>
<tr>
<td>SL9563</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211016</td>
</tr>
<tr>
<td>SL9564</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211017</td>
</tr>
<tr>
<td>SL9565</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211018</td>
</tr>
<tr>
<td>SL9566</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211019</td>
</tr>
<tr>
<td>SL9567</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211020</td>
</tr>
<tr>
<td>SL9568</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211021</td>
</tr>
<tr>
<td>SL9569</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211022</td>
</tr>
<tr>
<td>SL9570</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211023</td>
</tr>
<tr>
<td>SL9571</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211024</td>
</tr>
<tr>
<td>SL9572</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211025</td>
</tr>
<tr>
<td>SL9573</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211026</td>
</tr>
<tr>
<td>SL9574</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211027</td>
</tr>
<tr>
<td>SL9575</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211028</td>
</tr>
<tr>
<td>SL9576</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211029</td>
</tr>
<tr>
<td>SL9577</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211030</td>
</tr>
<tr>
<td>SL9578</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211031</td>
</tr>
<tr>
<td>SL9579</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211032</td>
</tr>
<tr>
<td>SL9580</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211033</td>
</tr>
<tr>
<td>SL9581</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211034</td>
</tr>
<tr>
<td>SL9582</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211035</td>
</tr>
<tr>
<td>SL9583</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211036</td>
</tr>
<tr>
<td>SL9584</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211037</td>
</tr>
<tr>
<td>SL9585</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211038</td>
</tr>
<tr>
<td>SL9586</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211039</td>
</tr>
<tr>
<td>SL9587</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211040</td>
</tr>
<tr>
<td>SL9588</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211041</td>
</tr>
<tr>
<td>SL9589</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211042</td>
</tr>
<tr>
<td>SL9590</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211043</td>
</tr>
<tr>
<td>SL9591</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211044</td>
</tr>
<tr>
<td>SL9592</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211045</td>
</tr>
<tr>
<td>SL9593</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211046</td>
</tr>
<tr>
<td>SL9594</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211047</td>
</tr>
<tr>
<td>SL9595</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211048</td>
</tr>
<tr>
<td>SL9596</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211049</td>
</tr>
<tr>
<td>SL9597</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211050</td>
</tr>
<tr>
<td>SL9598</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211051</td>
</tr>
<tr>
<td>SL9599</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211052</td>
</tr>
<tr>
<td>SL95100</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211053</td>
</tr>
<tr>
<td>霉株整理番号</td>
<td>金南風</td>
<td>黄玉</td>
<td>Te-tep</td>
<td>中国45号</td>
<td>Java</td>
<td>IR-8</td>
<td>IR-20</td>
<td>Cas209</td>
<td>IR-24</td>
<td>MAFF登録番号</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>SL95101</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211054</td>
</tr>
<tr>
<td>SL95102</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211055</td>
</tr>
<tr>
<td>SL95103</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211056</td>
</tr>
<tr>
<td>SL95104</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211057</td>
</tr>
<tr>
<td>SL95105</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211058</td>
</tr>
<tr>
<td>SL95106</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211059</td>
</tr>
<tr>
<td>SL95107</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211060</td>
</tr>
<tr>
<td>SL95108</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211061</td>
</tr>
<tr>
<td>SL95109</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211062</td>
</tr>
<tr>
<td>SL95110</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211063</td>
</tr>
<tr>
<td>SL95111</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211065</td>
</tr>
<tr>
<td>SL95112</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211066</td>
</tr>
<tr>
<td>SL95113</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211067</td>
</tr>
<tr>
<td>SL95114</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211068</td>
</tr>
<tr>
<td>SL95115</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211069</td>
</tr>
<tr>
<td>SL95116</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211070</td>
</tr>
<tr>
<td>SL95117</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211071</td>
</tr>
<tr>
<td>SL95118</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211072</td>
</tr>
<tr>
<td>SL95119</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211073</td>
</tr>
<tr>
<td>SL95120</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211074</td>
</tr>
<tr>
<td>SL95121</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211075</td>
</tr>
<tr>
<td>SL95122</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211076</td>
</tr>
<tr>
<td>SL95123</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211077</td>
</tr>
<tr>
<td>SL95124</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211078</td>
</tr>
<tr>
<td>SL95125</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211079</td>
</tr>
<tr>
<td>SL95126</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211080</td>
</tr>
<tr>
<td>SL95127</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211081</td>
</tr>
<tr>
<td>SL95128</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211082</td>
</tr>
<tr>
<td>SL95129</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211083</td>
</tr>
<tr>
<td>SL95130</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211084</td>
</tr>
<tr>
<td>SL95131</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211085</td>
</tr>
<tr>
<td>SL95132</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211086</td>
</tr>
<tr>
<td>SL95133</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211087</td>
</tr>
<tr>
<td>SL95134</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211088</td>
</tr>
<tr>
<td>SL95135</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211089</td>
</tr>
<tr>
<td>SL95136</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211090</td>
</tr>
<tr>
<td>SL95137</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211091</td>
</tr>
<tr>
<td>SL95138</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211092</td>
</tr>
<tr>
<td>SL95139</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211093</td>
</tr>
<tr>
<td>SL95140</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211094</td>
</tr>
<tr>
<td>SL95141</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211095</td>
</tr>
<tr>
<td>SL95142</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211096</td>
</tr>
<tr>
<td>SL95143</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211097</td>
</tr>
<tr>
<td>SL95144</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>211098</td>
</tr>
</tbody>
</table>

* S：罹病性 R：抵抗性
表5 準同質遺伝子系統を用いた病原性試験

<table>
<thead>
<tr>
<th>菌株調整番号</th>
<th>MAFF登録番号</th>
<th>金南風</th>
<th>黄玉</th>
<th>トネシキ</th>
<th>鎌本</th>
<th>ニシシャン</th>
<th>中国45号</th>
<th>Java</th>
<th>IR-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL9501</td>
<td>210954</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9504</td>
<td>210957</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9507</td>
<td>210960</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9511</td>
<td>210964</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9514</td>
<td>210967</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9517</td>
<td>210970</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9521</td>
<td>210974</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9524</td>
<td>210977</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9527</td>
<td>210980</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9530</td>
<td>210983</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9533</td>
<td>210986</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9536</td>
<td>210989</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9539</td>
<td>210992</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9542</td>
<td>210995</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9545</td>
<td>210998</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9548</td>
<td>211001</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9551</td>
<td>211004</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9554</td>
<td>211007</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9557</td>
<td>211010</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9561</td>
<td>211014</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9564</td>
<td>211017</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9568</td>
<td>211021</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9574</td>
<td>211027</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9577</td>
<td>211030</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9581</td>
<td>211034</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9585</td>
<td>211038</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9589</td>
<td>211042</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9592</td>
<td>211045</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9595</td>
<td>211048</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9599</td>
<td>211052</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9603</td>
<td>211056</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9607</td>
<td>211060</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9611</td>
<td>211064</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9615</td>
<td>211068</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9619</td>
<td>211072</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9623</td>
<td>211076</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9627</td>
<td>211080</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9633</td>
<td>211086</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9639</td>
<td>211092</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>SL9643</td>
<td>211096</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>T7174</td>
<td></td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>T7147</td>
<td></td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>T7133</td>
<td></td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>H75317</td>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>H75304</td>
<td></td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>H8584</td>
<td></td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>BM8429</td>
<td></td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>BD8457</td>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

* S: 損病性 R: 抵抗性 数値: 病斑長(cm)
図2 分離イネ白葉枯病菌の病原型の割合

<table>
<thead>
<tr>
<th>TYPE</th>
<th>頻度数</th>
<th>割合（％）</th>
<th>貝塚</th>
<th>黄玉</th>
<th>Te-top</th>
<th>中国45号</th>
<th>Java 14</th>
<th>日本型</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>VII</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>38.6</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>III</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>なし</td>
</tr>
<tr>
<td>4</td>
<td>86</td>
<td>58.6</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>IV</td>
</tr>
<tr>
<td>合計</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図3 制限酵素BamHIによる2-4Kb付近のバンドパターン

---39---
<table>
<thead>
<tr>
<th>RFLP TYPE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>個体数</td>
<td>22</td>
<td>27</td>
<td>13</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>割合 (%)</td>
<td>15.2</td>
<td>18.6</td>
<td>9</td>
<td>10.3</td>
<td>1.3</td>
<td>0.7</td>
<td>2.1</td>
<td>0.7</td>
<td>9</td>
<td>4.1</td>
<td>4.8</td>
<td>2.1</td>
<td>9</td>
<td>1.3</td>
<td>2.7</td>
<td>2.7</td>
<td>3.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

図4 各RFLPタイプの割合

図5 RFLPに基づく系統樹（制限酵素BamHI）
Ⅲ. 前年度までの探索収集実績のまとめ
Ⅲ．前年度までの探索収集実績のまとめ

<table>
<thead>
<tr>
<th>年度</th>
<th>調査課題</th>
<th>対象微生物</th>
<th>担当機関</th>
<th>担当者</th>
<th>派遣先</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和62</td>
<td>害虫防除に利用する微生物の探索および特性解明</td>
<td>昆虫寄生菌</td>
<td>果樹試験場</td>
<td>佐藤勝男</td>
<td>長野県・岩手県・青森県</td>
<td>62.7.27～, 62.7.29, 62.10.22～, 62.10.24, 62.12.7～, 62.12.8</td>
</tr>
<tr>
<td></td>
<td>香川県および愛媛県における魚類病原菌およびウィルスの探索収集</td>
<td>魚類病原細菌</td>
<td>病原研究所</td>
<td>反町隆</td>
<td>香川県・愛媛県</td>
<td>62.11.7～, 62.10.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>魚類病原ウィルス</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>多糖類分解酵素の生産菌の探索および特性解明</td>
<td>多糖類分解酵素産生菌</td>
<td>食品総合研究所</td>
<td>原口和明</td>
<td>千葉県</td>
<td>62.10.24～, 62.10.29</td>
</tr>
<tr>
<td></td>
<td>北海道の各種飼料に着生する有用微生物の収集</td>
<td>飼料微生物</td>
<td>食品試験場</td>
<td>原田慎一郎</td>
<td>北海道</td>
<td>62.9.24～, 62.9.29</td>
</tr>
<tr>
<td></td>
<td>窒素固定菌の探索収集とその有効利用</td>
<td>窒素固定菌</td>
<td>農業生物資源研究所</td>
<td>藤生卓磨</td>
<td>タイ</td>
<td>62.9.1～, 62.9.22</td>
</tr>
<tr>
<td></td>
<td>反対家寄生性住血液虫の探索および収集</td>
<td>反対家寄生性原虫</td>
<td>家畜衛生試験場</td>
<td>南智郎</td>
<td>インドネシア</td>
<td>62.11.29～, 62.12.19</td>
</tr>
<tr>
<td>昭和63</td>
<td>小笠原諸島の熱帯熱帯農業環境における植物遺伝資源の収集および特性解明</td>
<td>植物病原菌</td>
<td>農業環境技術研究所</td>
<td>佐藤豊三</td>
<td>小笠原諸島 (父島、母島)</td>
<td>63.7.1～, 63.7.6</td>
</tr>
<tr>
<td></td>
<td>果樹の根病菌に対する病害およびアドウィルス病原菌の探索収集および特性解明</td>
<td>果樹病原ウィルス</td>
<td>果樹試験場</td>
<td>今原春我</td>
<td>岩手県、青森県</td>
<td>63.6.20～, 63.6.23</td>
</tr>
<tr>
<td></td>
<td>熱帯地域に生息する食品関連の特殊系病菌の収集</td>
<td>カビ病菌</td>
<td>食品総合研究所</td>
<td>田中正</td>
<td>内田光之</td>
<td>63.11.5～, 63.11.10</td>
</tr>
<tr>
<td></td>
<td>北海道における大型細胞病原菌の探索収集</td>
<td>大型細胞病原菌</td>
<td>中央水産研究所</td>
<td>中山健</td>
<td>北海道</td>
<td>63.7.4～, 63.7.6</td>
</tr>
<tr>
<td></td>
<td>ネパール国における伝統的な発酵食品の調査および微生物系の調査</td>
<td>（食品）発酵微生物</td>
<td>食品総合研究所</td>
<td>新山正</td>
<td>ネパール</td>
<td>63.10.11～, 63.11.1</td>
</tr>
<tr>
<td>平成</td>
<td>沖縄における食用きのこ遺伝資源の探索収集および特性解明</td>
<td>食用きのこ</td>
<td>森林総合研究所</td>
<td>表里仁</td>
<td>沖縄県</td>
<td>1.11.13～, 1.11.19</td>
</tr>
<tr>
<td></td>
<td>都市近郊周辺におけるアフラトキシン発生菌の探索収集</td>
<td>番茄菌</td>
<td>食品総合研究所</td>
<td>岡崎博</td>
<td>宮崎県</td>
<td>1.8.23～, 1.8.25</td>
</tr>
<tr>
<td></td>
<td>タイにおけるさび病害菌の重複寄生菌の調査・収集</td>
<td>さび微生物</td>
<td>農業環境技術研究所</td>
<td>佐藤豊三</td>
<td>タイ</td>
<td>1.10.2～, 1.10.21</td>
</tr>
<tr>
<td>平2</td>
<td>キオンダクシュ菌の病原性状の探索収集</td>
<td>番茄菌</td>
<td>森林総合研究所</td>
<td>島津光明</td>
<td>沖縄県</td>
<td>2.12.18～, 2.12.21</td>
</tr>
<tr>
<td></td>
<td>ムシガム産業点病菌の交配用菌株等の探索</td>
<td>番茄菌</td>
<td>食品試験場</td>
<td>月見隆雄</td>
<td>九州</td>
<td>2.9.9～, 2.9.12</td>
</tr>
<tr>
<td></td>
<td>特殊環境微生物の探索と利用</td>
<td>特殊環境微生物</td>
<td>食品総合研究所</td>
<td>川瀬俊之</td>
<td>九州</td>
<td>2.10.15～, 2.10.8</td>
</tr>
<tr>
<td></td>
<td>ニューカレドニアにおける食用きのこ類の探索収集</td>
<td>食用きのこ</td>
<td>森林総合研究所</td>
<td>郷田仁</td>
<td>ニューカレドニア</td>
<td>3.3.13～, 3.3.27</td>
</tr>
<tr>
<td>年度</td>
<td>調査課題</td>
<td>対象樹種</td>
<td>担当機関</td>
<td>担当者</td>
<td>派遣先</td>
<td>期間</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>平3</td>
<td>高知県における本材腐朽菌遺伝資源の探索収集</td>
<td>木材腐朽菌</td>
<td>森林総合研究所</td>
<td>岸部 雄</td>
<td>高知県</td>
<td>3.11.12− 3.11.15</td>
</tr>
<tr>
<td></td>
<td>セルロース合成および分解反応の探索収集および特性解明</td>
<td>木質菌類・子葉菌類</td>
<td>農業環境技術研究所</td>
<td>大久保 博人</td>
<td>北海道</td>
<td>3.9.24− 3.9.28</td>
</tr>
<tr>
<td></td>
<td>北海道におけるコムギ植物体上微小菌類の収集</td>
<td>微小菌類</td>
<td>農業生物資源研究所</td>
<td>青木 孝之</td>
<td>北海道</td>
<td>3.7.8− 3.7.12</td>
</tr>
<tr>
<td></td>
<td>米粒の品質劣化に影響する病原菌類相と侵害機作の解明</td>
<td>米状菌</td>
<td>農業研究センター</td>
<td>内藤 秀樹</td>
<td>大分県</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>山口県</td>
<td>3.9.23− 3.9.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>大分県</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>タイにおける特殊環境微生物（好塩菌）の探索収集</td>
<td>特殊環境生物</td>
<td>食品総合研究所</td>
<td>川澄 俊之</td>
<td>タイ</td>
<td>3.7.25− 3.8.20</td>
</tr>
<tr>
<td>平4</td>
<td>ナシ黒星病菌のDMI耐感受性のモニタリング</td>
<td>米状菌</td>
<td>果樹試験場</td>
<td>石井 修夫</td>
<td>佐賀県</td>
<td>4.7.18− 4.7.20</td>
</tr>
<tr>
<td></td>
<td>九州における樹木寄生糸状菌類と調査の収集</td>
<td>米状菌</td>
<td>森林総合研究所</td>
<td>金子 隆</td>
<td>大分県</td>
<td>4.9.22− 4.9.27</td>
</tr>
<tr>
<td></td>
<td>中華人民共和国雲南省におけるイネいもち病菌の探索・収集</td>
<td>米状菌</td>
<td>農業研究センター</td>
<td>内藤 秀樹</td>
<td>中国</td>
<td>4.9.19− 4.9.29</td>
</tr>
<tr>
<td>平5</td>
<td>小笠原諸島におけるさび病菌の重複寄生菌の調査・収集</td>
<td></td>
<td>国立農業試験場</td>
<td>佐藤 豊三</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>九州地域におけるイネ白星枯病菌各種レースの探索・収集</td>
<td></td>
<td>農業生物資源研究所</td>
<td>加来 久敏</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>タイ国におけるサイレージ用高温性乳酸菌の探索・収集</td>
<td></td>
<td>草地試験場</td>
<td>大桃 定 洋</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annual Report on Exploration and Introduction of Microbial Genetic Resources

Vol. 8

April 1994 — March 1995

March 1996

National Institute of Agrobiological Resources